Martin JS, Monaghan TM, Wilcox MH. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol. 2016;13:206–16.
Article
PubMed
Google Scholar
Mawer DPC, Eyre DW, Griffiths D, et al. Contribution to Clostridium difficile transmission of symptomatic patients with toxigenic strains who are fecal toxin negative. Clin Infect Dis. 2017;64:1163–70.
Article
PubMed
Google Scholar
Polage CR, Solnick JV, Cohen SH. Toxin immunoassays and Clostridium difficile infection-reply. JAMA Intern Med. 2016;176:414–5.
Article
PubMed
Google Scholar
Planche TD, Davies KA, Coen PG, et al. Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis. 2013;13:936–45.
Article
PubMed
PubMed Central
Google Scholar
Klevens RM, Edwards JR, Richards CL Jr, et al. estimating health care associated infections and deaths in US hospitals, 2002. Public Health Rep. 2007;122:160–6.
Article
PubMed
PubMed Central
Google Scholar
Goldenberg SD, French GL. Diagnostic testing for Clostridium difficile: a comprehensive survey of laboratories in England. J Hosp Infect. 2011;79:4–7.
Article
CAS
PubMed
Google Scholar
Wilcox MH. Laboratory diagnosis of Clostridium difficile infection: in a state of transition or confusion or both? J Hosp Infect. 2011;79:1–3.
Article
CAS
PubMed
Google Scholar
Novak-Weekley SM, Marlowe EM, Miller JM, et al. Clostridium difficile testing in the clinical laboratory by use of multiple testing algorithms. J Clin Microbiol. 2010;48:889–93.
Article
PubMed
PubMed Central
Google Scholar
Planche T, Wilcox M. Reference assays for Clostridium difficile infection: one or two gold standards? J Clin Pathol. 2011;64:1–5.
Article
CAS
PubMed
Google Scholar
Planche T, Aghaizu A, Holliman R, et al. Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis. 2008;8:777–84.
Article
PubMed
Google Scholar
Wilcox MH, Planche T, Fang FC, Gilligan P. Point-counterpoint. What is the current role of algorithmic approaches for diagnosis of Clostridium difficile infection? J Clin Microbiol. 2010;48:4347–53.
Article
PubMed
PubMed Central
Google Scholar
Reigadas E, Alcalá L, Valerio M, Marín M, Martin A, Bouza E, Toxin BPCR. Cycle threshold as a predictor of poor outcome of Clostridium difficile infection: a derivation and validation cohort study. J Antimicrob Chemother. 2016;71:1380–5.
Article
CAS
PubMed
Google Scholar
Ticehurst JR, Aird DZ, Dam LM, et al. Effective detection of toxigenic Clostridium difficile by a two-step algorithm including tests for antigen and cytotoxin. J Clin Microbiol. 2006;44:1145–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eastwood K, Else P, Charlett a, Wilcox M. Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. J Clin Microbiol. 2009;47:3211–7.
Article
PubMed
PubMed Central
Google Scholar
Humphries RM, Uslan DZ, Rubin Z. Performance of Clostridium difficile toxin enzyme immunoassay and nucleic acid amplification tests stratified by patient disease severity. J Clin Microbiol. 2013;51:869–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reller ME, Lema CA, Perl TM, et al. Yield of stool culture with isolate toxin testing versus a two-step algorithm including stool toxin testing for detection of toxigenic Clostridium difficile. J Clin Microbiol. 2007;45:3601–5.
Article
PubMed
PubMed Central
Google Scholar
Crobach MJ, Planche T, Eckert C, et al. European society of clinical microbiology and infectious diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2016;22:S63–81.
Article
PubMed
Google Scholar
Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31:431–55.
Article
PubMed
Google Scholar
Davies KA, Longshaw CM, Davis GL, et al. Under diagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis. 2014;14:1208–19.
Article
PubMed
Google Scholar
Updated guidance on the management and treatment of Clostridium difficile infection. 2013. Public Health England. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/321891/Clostridium_difficile_management_and_treatment.pdf.
SMI B10: Processing of faeces for Clostridium difficile, PHE, 2014 available at: https://www.gov.uk/government/publications/smi-b-10-processing-of-faeces-for-clostridium-difficile.
Wren MW, Sivapalan M, Kinson R, Shetty NR. Laboratory diagnosis of Clostridium difficile infection. An evaluation of tests for faecal toxin, glutamate dehydrogenase, lactoferrin and toxigenic culture in the diagnostic laboratory. Br J Biomed Sci. 2009;66:1–5.
Article
CAS
PubMed
Google Scholar
Lewis SJ, Heaton KW. Stool form scale as a useful guide to intestinal transit time. Scand J Gastroenterol. 1997;32:920–4.
Article
CAS
PubMed
Google Scholar
hmeasure package. Version 1.0. R version 3.4.0 (2017–04-21).
plotROC package. Version 2.0.1. R version 3.4.0 (2017–04-21).
R version 3.4.0 (2017–04-21) -- "You Stupid Darkness”. Copyright (C) 2017 The R Foundation for Statistical Computing.
Hand DJ. Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach Learn. 2009;77:103–23.
Article
Google Scholar
Lopez-Raton M, Rodriguez-Alvarez M, Cadarso-Suarez C, Gude-Sampedro F. OptimalCutpoints: an R package for selecting optimal Cutpoints in diagnostic tests. J Stat Soft. 2014;61:1–36.
Article
Google Scholar
Dionne LL, Raymond F, Corbeil J, Longtin J, Gervais P, Longtin Y. Correlation between Clostridium difficile bacterial load, commercial real-time PCR cycle thresholds, and results of diagnostic tests based on enzyme immunoassay and cell culture cytotoxicity assay. J Clin Microbiol. 2013;51:3624–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eyre DW, Fawley WN, Rajgopal A, et al. Comparison of control of Clostridium Difficile infection in six English hospitals using whole-genome sequencing. Clin Infect Dis. 2017;65:433–41.
Article
PubMed
Google Scholar
Mermel LA. Diverse sources of C. difficile infection. N Engl J Med. 2014;370:182–3.
Article
PubMed
Google Scholar
Jazmati N, Hellmich M, Ličanin B, Plum G, Kaasch AJPCR. Cycle threshold value predicts the course of Clostridium difficile infection. Clin Microbiol Infect. 2016;22:e7–8.
Article
CAS
PubMed
Google Scholar
Senchyna F, Gaur RL, Gombar S, Truong CY, Schroeder LF, Banael N. Clostridium Difficile PCR cycle threshold predicts free toxin. J Clin Microbiol. 2017;55:2651–60.
Article
PubMed
Google Scholar
Rao K, Micic D, Natarajan M, et al. Clostridium difficile ribotype 027: relationship to age, detectability of toxins a or B in stool with rapid testing, severe infection, and mortality. Clin Infect Dis. 2015;61:233–41.
Article
CAS
PubMed
PubMed Central
Google Scholar