Skip to main content

Table 3 Binary Logistic Analysis for the risk factors of HIV false positives

From: HIV infection in Xi’an, China: epidemic characterization, risk factors to false positives and potential utility of the sample-to-cutoff index to identify true positives using Architect HIV Ag/Ab combo

Characteristics False-positive Crude Adjusted
Yes No OR 95%CI p-value OR 95%CI p-value
Sex
 Male 61 89 1    1   
 Female 39 28 2.03 1.13–3.65 0.017* 2.03 0.9–4.57 0.09
Age, years
 ─ 40 20 86 1    1   
 40–60 31 27 5.44 2.64–11.22 0.000 6.9 3.02–15.78 0.000***
  ≥ 60 49 4 36.25 13.65–96.24 0.000 46.85 16.28–134.81 0.000***
Ethnicity
 Han 99 115 1    1   
 Minority 1 2 1.72 0.15–19.28 0.659 0.71 0.06–9.09 0.794
Comorbidity
 Renal diseases
  No 95 115 1    1   
  Yes 5 2 3.03 0.57–15.95 0.192 1.47 0.13–17.28 0.761
 HBV infection
  No 95 98 1    1   
  Yes 5 2 3.03 0.57–15.95 0.192 1.77 0.13–24.56 0.670
 Malignancy
  No 83 115 1    1   
  Yes 17 2 11.78 2.65–52.37 0.001*** 9 1.61–50.4 0.012*
 Pregnancy
  No 94 116 1    1   
  Yes 6 1 6.11 0.70–53.16 0.101 26.58 2.75–256.6 0.005*
 Autoimmune diseases
  No 98 117 1    1   
  Yes 2 0 4.83 0.53–43.97 0.162 9.35 0.57–152.74 0.117
  1. Notes: *Statistically significant association, P < 0.05; ***very strong statistically significant association, P < 0.001