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Abstract 

Background Continuous surveillance for healthcare-associated infections such as central venous catheter-related 
bloodstream infections (CVC-BSI) is crucial for prevention. However, traditional surveillance methods are resource-
intensive and prone to bias. This study aimed to develop and validate fully-automated surveillance algorithms 
for CVC-BSI.

Methods Two algorithms were developed using electronic health record data from 1000 admissions with a posi-
tive blood culture (BCx) at Karolinska University Hospital from 2017: (1) Combining microbiological findings in BCx 
and CVC cultures with BSI symptoms; (2) Only using microbiological findings. These algorithms were validated in 5170 
potential CVC-BSI-episodes from all admissions in 2018–2019, and results extrapolated to all potential CVC-BSI-epi-
sodes within this period (n = 181,354). The reference standard was manual record review according to ECDC’s defini-
tion of microbiologically confirmed CVC-BSI (CRI3-CVC).

Results In the potential CVC-BSI-episodes, 51 fulfilled ECDC’s definition and the algorithms identified 47 and 49 epi-
sodes as CVC-BSI, respectively. Both algorithms performed well in assessing CVC-BSI. Overall, algorithm 2 performed 
slightly better with in the total period a sensitivity of 0.880 (95%-CI 0.783–0.959), specificity of 1.000 (95%-CI 0.999–
1.000), PPV of 0.918 (95%-CI 0.833–0.981) and NPV of 1.000 (95%-CI 0.999–1.000). Incidence according to the reference 
and algorithm 2 was 0.33 and 0.31 per 1000 in-patient hospital-days, respectively.

Conclusions Both fully-automated surveillance algorithms for CVC-BSI performed well and could effectively replace 
manual surveillance. The simpler algorithm, using only microbiology data, is suitable when BCx testing adheres to rec-
ommendations, otherwise the algorithm using symptom data might be required. Further validation in other settings 
is necessary to assess the algorithms’ generalisability.

Keywords Automated surveillance, Algorithms, Catheter-related infection, Central venous catheter-related 
bloodstream infection, Electronic health record data, Healthcare-associated infections
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Background
Healthcare-associated infections (HAIs) are common 
adverse events, affecting millions of patients annually, 
imposing a significant burden on the healthcare system 
and leading to extended hospital stays, increased morbid-
ity, mortality, and higher costs [1–3]. Bloodstream infec-
tions (BSIs) constitute nearly 11% of all HAIs, affecting 
around 375,000 patients yearly in Europe [3]. Among 
these, central venous catheter-related BSIs (CVC-BSIs), 
associated with the use of these medical devices, remain 
a significant concern despite recent progress in their pre-
vention [4, 5]. The incidence of CVC-BSI is often con-
sidered a key indicator of the effectiveness of infection 
prevention and control measures in healthcare settings 
[5].

A substantial proportion of HAIs are preventable [1, 
4, 5]. Continuous surveillance with feedback to health-
care personnel and stakeholders is essential to effectively 
allocate resources and evaluate interventions [6, 7]. Still, 
most HAI surveillance relies on time-consuming and 
resource-intensive manual record review, prone to sub-
jective interpretation and surveillance bias [8–10]. How-
ever, with the adoption of electronic health record (EHR) 
systems, detailed digital EHR data is accessible which 
is enabling the development of automated surveillance 
methods, thereby reducing workload, and providing 
standardised and continuous surveillance data [11, 12]. 
Nonetheless, these surveillance algorithms must undergo 
thorough validation before implementation.

Automated surveillance algorithms for CVC-BSI have 
been developed [13–26]. However, to our knowledge, 
the majority were based on an ICU population [13–19], 
were semi-automated [13–16, 20–23], and nearly all used 
the central line-associated BSI (CLABSI) criteria of the 
Centers for Disease Control and Prevention (CDC) as 
reference [13–15, 17–26] and none the microbiologically 
confirmed CVC-BSI (CRI3-CVC) definition of the Euro-
pean Centre for Disease Prevention and Control (ECDC).

In this study, the aim was to develop fully-automated 
rule-based surveillance algorithms using EHR data for 
the detection of CVC-BSI in hospitalised patients, and 
validate it against manual record review according to 
ECDC’s CRI3-CVC definition. The best performing algo-
rithm was applied over a four-year period to visualise the 
incidence of CVC-BSI.

Methods
Study design and data source
This retrospective cohort study used prospectively 
entered EHR data from the Karolinska University Hos-
pital (KUH) stored in the 2SPARE (2020 started Stock-
holm/Sweden Proactive Adverse Events REsearch) 

database. KUH is a tertiary care academic centre in 
Stockholm, Sweden with 1100 beds divided between two 
sites (Huddinge and Solna), which serves a population 
of 2.3 million inhabitants, i.e., the entire population of 
Region Stockholm. Data included demographics, hospital 
administrative data, disease and procedure codes, micro-
biological results, physiological parameters, medication, 
and medical notes. For this study hospital admissions 
between 2017 and 2019 were used (Fig.  1). Admissions 
which included obstetric wards were excluded due to 
lack of complete data. For the intensive care unit (ICU) 
no structured data on physiological parameters were 
available.

The algorithms were functionally developed in a sim-
ple random sample of 1000 admissions with a positive 
blood culture (BCx) from 2017. Only (semi-)structured 
variables were used. Admissions from 2018–2019 
(n = 132,850) were used as the validation period cohort 
(Fig. 1). These admissions were divided into three groups: 
(1) admissions with at least one positive BCx (n = 5145), 
(2) admissions with only negative BCx (n = 25,132), and 
(3) admissions without BCx performed (n = 102,573). 
From these three groups 1000, 250 and 250 admissions, 
respectively, were selected via simple random selec-
tion for the validation dataset. In this validation dataset 
the presence of CVC-BSI was assessed by three trained 
professionals by manual record review as gold standard. 
The reviewers were blinded for the algorithm results and 
forty cases were reviewed in overlap resulting in almost 
perfect agreement (95.8–100%) between them, with a 
Cohen’s kappa of 0.90–1.00. Complicated cases were 
discussed and classified using a consensus decision by 
all reviewers. All BCx during admission were regarded 
as potential CVC-BSI-episodes, and an admission with 
no BCx counted as one potential CVC-BSI-episode. The 
study was approved by the Regional Ethical Review Board 
in Stockholm under permission no. 2018/1030-31.

Case definition and reference standard of CVC‑BSI
The assessment of CVC-BSI during manual record review 
was performed according to ECDC’s BSI and CRI3-CVC 
definitions at the time of this study [27]. Contaminant 
was defined according to the common commensal list of 
CDC [28]. All CVCs fulfilling the criteria of ECDC and 
CDC were assessed [27, 29]. All CVC-BSI were recorded, 
but the healthcare-associated (HA) classification was 
based on ECDC’s definition [27].

Algorithms
Two rule-based algorithms for CVC-BSI detection were 
developed in the development dataset (Fig. 2):
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1. Relevant microbiological findings in BCx and CVC 
cultures combined with the presence of BSI symp-
toms.

2. Only relevant microbiological findings in BCx and 
CVC cultures.

For BSI, a positive BCx was defined as any growth of 
microorganisms and the division between a recognised 
pathogen or contaminant was based on the organism 
classification list of the CDC [28]. For recognised patho-
gens one BCx was sufficient. For contaminants two dif-
ferent BCx taken within 48 h of each other should be 
present together with the presence of BSI symptoms. 
BSI symptoms comprised fever (> 38  °C) and hypoten-
sion, the latter defined as a systolic blood pressure < 90 
mmHg or a diastolic blood pressure ≤ 60 mmHg [29]. BSI 
symptoms had to be present within three days before or 
after the BCx based on CDC’s infection window period 
[30]. To define a BSI as CVC-related either (1) a positive 
CVC-tip culture (quantitative ≥  103 CFU/ml) with the 
same microorganism (species level) taken within 48 h 
after the BCx or (2) a peripheral and central BCx, taken 
max. 15 min apart from each other, with the same micro-
organism and ≥ 2 h differential time to positivity between 

both BCx (central BCx < peripheral BCx) had to be pre-
sent. These two criteria also served as proxy for the BSI 
occurring before or after catheter removal. CDC’s 14-day 
repeat infection timeframe (RIT) criterion was used to 
assess when another CVC-BSI-episode could be regis-
tered when multiple CVC-BSI-episodes where present 
during one admission [30]. All CVC-BSI were assessed, 
but additionally they were defined as HA when the BCx 
was taken two days or more after admission (on day three 
or later where day of admission is day one) or within two 
days after admission (on day one or two of admission) if a 
previous admission within 48 h was present.

Statistical analysis
Data acquisition, management and analysis were per-
formed using R (version 4.1.0) and Python (version 3.7), 
and in accordance with current regulations concern-
ing privacy and ethics. Continuous variables are pre-
sented as median with interquartile ranges (IQR) and 
categorical variables as numbers with percentages. For 
algorithm performance, the sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value 
(NPV), area under the receiver operating characteris-
tic curve (AUROC), and kappa statistics were assessed. 

2SPARE database, Karolinska Institutet/Karolinska University Hospital

Inclusion & exclusion criteria study:
- Inclusion: all admissions 2017-2019

- Exclusion: admissions including 
obstetrical wards 

Development period cohort:
admissions 2017 (n=73,915)

Validation period cohort: admissions 2018-2019 (n=132,850)
1) 5,145 with at least 1 positive BCx: 22,635 cultures/potential episodes

2) 25,132 with only negative BCx: 56,146 cultures/potential episodes
3) 102,573 with no BCx: 102,573 admissions/potential episodes

Random selection admission 
for development dataset

Random selection admission for 
validation dataset

Development dataset:
1,000 admissions with at least 

1 positive BCx

Validation dataset: 1,500 admissions
1) 1,000 with at least 1 positive BCx: 4,326 cultures/potential episodes

2) 250 with only negative BCx: 594 cultures/potential episodes
3) 250 with no BCx: 250 admissions/potential episodes

Functional development 
algorithms

Developed algorithms Application of algorithms

Annotation of data
- Fulfilling CVC-BSI definition of ECDC 

(CVC-CRI3) (manual record review)

Annotated data of validation dataset
1) 51 CVC-BSI episodes (32 HA)

2) 0 CVC-BSI episodes (0 HA)
3) 0 CVC-BSI episodes (0 HA)

Performance estimates
Sensitivity, specificity, positive predictive 

value, negative predictive value

Extrapolation 
performance 

estimates 
based on 
sample 

proportions

Fig. 1 Flow chart of study. BCx: blood culture; CRI3-CVC: microbiologically confirmed central venous catheter-related bloodstream 
infection; CVC-BSI: central venous catheter-related bloodstream infection; ECDC: European Centre for Disease Prevention and Control; HA: 
healthcare-associated. Positive BCx: BCx with any growth of microorganisms (pathogens and/or contaminants). CVC-BSI-episode: all BCx taken 
during admission were regarded as potential CVC-BSI-episodes, and each admission without BCx taken counted as one potential CVC-BSI-episode
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Fig. 2 Flow diagram of the two rule-based surveillance algorithms for central venous catheter-related bloodstream infection. BCx: blood culture; 
BSI: bloodstream infection; CFU: colony-forming unit; CVC: central venous catheter; HA: healthcare-associated. Positive BCx: any BCx with growth 
of microorganisms (pathogens and/or contaminants). BSI symptoms: fever (> 38 °C) and/or hypotension (systolic blood pressure < 90 mmHg 
or diastolic blood pressure ≤ 60 mmHg). CVC-BSI-episode: all BCx taken during admission were regarded as potential CVC-BSI-episodes, and each 
admission without BCx taken counted as one potential CVC-BSI-episode. RIT: repeat infection timeframe, i.e., within 14 days after the first positive 
BCx of a previous CVC-BSI-episode
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The 95% confidence interval (95%CI) for estimates in the 
validation dataset were calculated using the asymptotic 
variance with Wilson score method. Results from the val-
idation dataset were extrapolated to the validation period 
cohort of 2018–2019 to obtain performance estimates of 
the algorithms in the complete target population (Fig. 1). 
The CI for these estimates were calculated as the 2.5th 
and 97.5th percentiles of point estimates obtained from 
10,000 bootstrap samples for each of the three groups. 
To account for uncertainty, the bootstrapping was per-
formed before extrapolating the proportions from the 
validation dataset to the validation period cohort [31]. 
Finally, the best performing algorithm was applied to 
data of 2017–2020 to visualise the incidence of CVC-BSI 
per 1000 in-patient hospital-days by continuous auto-
mated surveillance.

Results
In the validation dataset 4326 BCx, of which 1766 posi-
tive (40.8%), were present among the 1000 admissions 
with at least one positive BCx, and 594 BCx in the 250 
admissions with only negative BCx. Together with the 
250 admissions with no BCx taken, this amounted to 
5170 potential CVC-BSI-episodes used for the calcu-
lations of algorithm performance (Table  1 and Fig.  1). 
There were 181,354 potential CVC-BSI-episodes during 
admissions of the validation period cohort of 2018–2019 
(n = 132,850) used for the calculation of extrapolated 
algorithm performance (Fig. 1). Of the 78,781 BCx pre-
sent during this period, 9340 were positive (11.9%).

Overall, the patients within the validation dataset with 
positive BCx were older and consisted of more males 
than the patients with negative or no BCx during admis-
sion (Table  1). The length of hospital stay, number of 
ICU admissions and in-hospital mortality was highest in 
admissions with positive BCx and lowest in admissions 
with no BCx.

Algorithms performance
No CVC-BSI-episodes were identified during manual 
record review in admissions with only negative BCx 
or no BCx. In the 4326 potential CVC-BSI-episodes of 
admissions with at least one positive BCx, 51 episodes 
(1.2%) fulfilled ECDC’s CRI3-CVC definition, and 32 
episodes (0.7%) the criteria for HA (Table  1). The two 
algorithms classified 47 (1.09%) and 49 (1.13%) as CVC-
BSI-episodes, respectively, and 26 (0.60%) and 27 (0.62%) 
as HA, respectively.

In the validation dataset with positive BCx as well as 
the total validation period cohort (extrapolated data) for 
all CVC-BSI, the algorithm based on relevant microbio-
logical findings in BCx and CVC cultures combined with 
the presence of BSI symptoms (algorithm 1) had a high 
sensitivity and PPV to determine CVC-BSI according 
to ECDC’s definition with a sensitivity of 0.861 (95%CI 
0.764–0.959) and PPV of 0.935 (95%CI 0.850–1.000) in 
the validation period cohort (Table  2). The algorithm 
based on only relevant microbiological findings in BCx 
and CVC cultures (algorithm  2) had a sensitivity of 
0.880 (95%CI 0.783–0.959) and PPV of 0.918 (95%CI 

Table 1 Characteristics of three admission groups in validation dataset

BCx: blood culture; CVC-BSI: central venous catheter-related bloodstream infection; ECDC: European Centre for Disease Prevention and Control; HA: healthcare-
associated; ICU: intensive care unit; IQR: interquartile range

Characteristics All Admissions with 
positive BCx

Admissions with 
negative BCx

Admissions 
with no BCx

Potential CVC-BSI episodes, n 5170 4326 594 250

BCx, n 4920 4326 594 0

Admissions, n 1500 1000 250 250

Patients, n 1470 972 248 250

Sex, n (% of patients)

 Female 675 (45.9) 430 (44.2) 122 (49.2) 123 (49.2)

 Male 792 (53.9) 541 (55.7) 126 (50.8) 125 (50.0)

 Unknown 3 (0.2) 1 (0.1) 0 (0) 2 (0.8)

Age (years), median [IQR] of admissions 64 [41–75] 67 [48–75] 60 [29–75] 54 [30–69]

Length of stay (days), median [IQR] of admissions 8 [4–16] 10 [16–21] 7 [4–14] 3 [2–6] 

ICU admission, n (% of admissions) 198 (13.2) 159 (15.9) 33 (13.2) 6 (2.4)

In-hospital mortality, n (% of admissions) 100 (6.7) 91 (9.1) 7 (2.8) 2 (0.8)

ECDC CVC-BSI, n (% of episodes) 51 (1.0) 51 (1.2) 0 (0.0) 0 (0.0)

ECDC HA CVC-BSI, n (% of episodes) 32 (0.6) 32 (0.7) 0 (0.0) 0 (0.0)
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0.833–0.981) in the validation period cohort. The speci-
ficity and NPV was high (Table 2).

In the HA CVC-BSI cases, for both algorithms the sen-
sitivity was lower and PPV higher compared to all CVC-
BSI cases (Table 2). In the validation period cohort, the 
sensitivity was 0.784 (95%CI 0.629–0.910) and the PVV 
was 0.956 (95%CI 0.868–1.000) for algorithm 1. For algo-
rithm  2 the sensitivity was 0.814 (95%CI 0.659–0.940) 
and PPV was 0.958 (95%CI 0.873–1.000). Overall, the 
specificity and NPV was high and similar to those for all 
CVC-BSI cases (Table 2).

The false negative and false positive cases were mostly 
related to cases wrongly classified by the annotators or 
algorithm rules missing for specific clinical situations 
not present in the development dataset (Table 3). When 
correcting the misclassification in the reference stand-
ard, for algorithm  2 in the validation period cohort the 
sensitivity would increase to 0.925 (95%CI 0.816–1.000) 
and 0.939 (95%CI 0.859–1.000) for HA and all CVC-BSI 
cases, respectively. Theoretically, when also improving 
algorithm rules, it could even increase to 0.959 (95%CI 
0.891–1.000) and 1.000 (95%CI 0.999–1.000) for HA and 
all CVC-BSI cases, respectively.

CVC‑BSI rates
The CVC-BSI rate was expressed against several possible 
denominators for the reference, i.e. manual record review, 
and the two algorithm results (Table 4). Both algorithms 
give slightly lower rates compared to the reference with 
algorithm 2 giving rates closest to the reference.

Algorithm  2 was applied over the period 2017–2020 
to show the incidence of CVC-BSI over time with auto-
mated surveillance (Fig.  3). The hospital-wide incidence 
rate was overall 0.31 per 1000 in-patient hospital-days 

and ranged from 0.11 to 0.53 for all CVC-BSI, and it 
was overall 0.16 per 1000 in-patient hospital-days with 
a range of 0.03 to 0.42 for HA CVC-BSI. The incidence 
seemed to show a seasonal trend. In 2020, during the 
COVID-19 pandemic, the incidence increased and dur-
ing some period the HA CVC-BSI rate seemed to diverge 
from the overall CVC-BSI rate.

Discussion
We developed two fully-automated surveillance algo-
rithms for the detection of CVC-BSI based on ECDC’s 
CRI3-CVC criteria. Both had a comparable and high 
performance for detecting CVC-BSI. To our knowledge, 
these are the first fully-automated surveillance algorithms 
developed for CVC-BSI based on ECDC’s definition.

Both algorithms had good performance and high 
agreement with the reference standard even though 
certain criteria of the surveillance definition were 
not part of the algorithm rules. Checking for pus cul-
tures from the insertion site was excluded since it was 
assessed to be less common and more difficult to auto-
mate. Chills as symptom was excluded because integra-
tion would require free-text analysis. Also, no explicit 
check for the presence of a CVC was done as adequate 
structured data on insertion and extraction was lack-
ing and it was assumed that the criteria for CVC cul-
ture and differential positivity between central and 
peripheral BCx could serve as proxy. These non-incor-
porated criteria of the definition were not relevant for 
the algorithm performance as none of the discrepant 
cases were related to these criteria. These cases were 
mostly related to misclassification of CVC-BSI cases 
during annotation or rules missing in the algorithm 
due to situations not present in the development data. 

Table 3 Discrepancy analyses between algorithm results and annotation results (reference), for false-negative and false-positive cases

BCx: blood culture; CVC-BSI: central venous catheter-related bloodstream infection; HA: healthcare-associated
a Algorithm 1: Relevant microbiological findings in BCx and CVC cultures combined with the presence of BSI symptoms
b Algorithm 2: Only relevant microbiological findings in BCx and CVC cultures

All CVC‑BSI cases HA CVC‑BSI cases

Algorithm 1a Algorithm 2b Algorithm 1a Algorithm 2b

Reasons false-negative cases

 True negative case (reference incorrect) 3 3 4 4

 Relevant information stored as free text 1 – 2 1

 Algorithm rules missing/not matching clinical situation 3 3 1 1

 Total number of false-negative cases 7 6 7 6

Reasons false-positive cases

 True positive cases (reference incorrect) 2 2 – –

 No symptoms present (contaminant BCx) – 1 – –

 Algorithm rules missing/not matching clinical situation 1 1 1 1

 Total number of false-positive cases 3 4 1 1
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Table 4 Rates central venous catheter-related bloodstream infection based on annotation (reference) and algorithm results

BCx: blood culture; CVC-BSI: central venous catheter-related bloodstream infection; HA: healthcare-associated
a Reference: True rate based on manual record review in validation dataset and expected rate based on extrapolation in validation period cohort
b Algorithm 1: Relevant microbiological findings in BCx and CVC cultures combined with the presence of BSI symptoms
c Algorithm 2: Only relevant microbiological findings in BCx and CVC cultures
d CVC-BSI-episode: all performed BCx were regarded as potential CVC-BSI-episodes during an admission, and admissions with no BCx counted as one potential CVC-
BSI-episode

Validation dataset with admissions with at least one positive BCx

All CVC‑BSI cases HA CVC‑BSI cases

Referencea 
(n = 51)

Algorithm 1b 
(n = 47)

Algorithm 2c 
(n = 49)

Referencea 
(n = 32)

Algorithm 1b 
(n = 26)

Algorithm 2c 
(n = 27)

Potential  episodesd (n = 4326) 1.18% 1.09% 1.13% 0.74% 0.60% 0.62%

Positive BCx (n = 1766) 2.89% 2.66% 2.77% 1.81% 1.47% 1.53%

Admissions (n = 1000) 5.1% 4.7% 4.9% 3.2% 2.6% 2.7%

1000 in-patient hospital-days (n = 17,782) 2.87 2.64 2.76 1.80 1.46 1.52

Extrapolated results to validation period cohort

All CVC‑BSI cases HA CVC‑BSI cases

Referencea 
(n = 267)

Algorithm 1b 
(n = 246)

Algorithm 2c 
(n = 256)

Referencea 
(n = 167)

Algorithm 1b 
(n = 137)

Algorithm 2c 
(n = 142)

Potential  episodesd (n = 181,354) 0.15% 0.14% 0.14% 0.09% 0.08% 0.08%

Admissions (n = 132,850) 0.20% 0.19% 0.19% 0.13% 0.10% 0.11%

1000 in-patient hospital-days (n = 817,058) 0.33 0.30 0.31 0.20 0.17 0.17

Fig. 3 Incidence rate of central venous catheter-related bloodstream infection per 1000 in-patient hospital-days during the period 2017–2020. 
BCx: blood culture; CVC-BSI: central venous catheter-related bloodstream infection; HA: healthcare-associated. Incidence rate based on application 
of algorithm which only used relevant microbiological findings in BCx and CVC cultures
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As reported, when correcting the misclassification in 
the reference standard and additionally also improving 
the algorithm rules, the performance of the algorithms 
could be even higher. However, if this holds in other 
settings needs to be investigated.

No major difference in the performance between both 
algorithms was found, where the simpler algorithm (algo-
rithm 2) was only using microbiology culture data and no 
symptom information. One could have expected a bigger 
difference considering that during the ICU period there 
was only access to data on BSI symptoms in medical 
notes, and algorithm 1 needed structured symptom data, 
and if in general many cultures were taken regardless 
of symptoms and positive for contaminants. This might 
indicate that in this setting peripheral/central blood 
and CVC cultures were primarily taken in patients with 
symptoms of infection, in line with the culture recom-
mendations in this setting and Swedish recommenda-
tions [32] which also matches the surveillance definition 
[27]. Consequently, this simpler algorithm could be used 
hospital-wide in this setting, independently from the 
availability of structured symptom data, without any 
major effect on the quality of surveillance. An advantage 
is that it is less vulnerable to weaknesses in data availabil-
ity. Also, it could further facilitate the implementation in 
other health care systems since the demand for quality 
data on symptoms is removed. However, it is not certain 
that this algorithm without symptoms would perform 
equally well in other settings where clinical practices for 
taking blood cultures on wider indications are present.

We developed algorithms to detect all CVC-BSI cases 
and additionally to detect the ones that are HA according 
to ECDC’s criteria. The CVC-BSI cases that did not fulfil 
these HA criteria (> 30%) were long-term CVCs inserted 
during a previous hospital admission with a discharge 
more than 48 h before, e.g., a peripherally inserted cen-
tral catheter (PICC-line) or subcutaneous venous port 
(SVP), or CVCs that were inserted at another healthcare 
facility than a hospital and still present when admitted to 
the hospital. Currently, patients get outpatient care with 
PICC-lines or SVPs or get it at another facility than the 
hospital [33]. Consequently, these cases should also be 
considered HA CVC-BSI even though not all are pre-
ventable for the hospital where they are admitted with 
their infection. Thus, the surveillance algorithm for all 
CVC-BSI cases better assesses their true burden on the 
healthcare system while the surveillance algorithm for 
HA CVC-BSI cases mostly indicates the cases possibly 
preventable by the hospital itself. Furthermore, the per-
formance of the algorithms for HA cases was slightly 
lower than for all cases which is related to a larger mis-
classification of HA cases by the algorithms as they 
missed information that was only available in free-text.

Previous studies have demonstrated that it is possible 
to develop both semi- [13–16, 20–23] and fully-auto-
mated [17–19, 24, 25] surveillance algorithms for CVC-
BSI according to the CLABSI definition that all perform 
well in comparison to manual record review. The hetero-
geneity in settings, populations and methods complicates 
a good comparison. Still, the performance of the algo-
rithms developed in this study, for CVC-BSI according to 
the CRI3-CVC definition, are comparable to the results 
of these previous studies. Yet, as expected, the semi-auto-
mated algorithms in general had higher sensitivity and 
NPV combined with lower specificity and PPV compared 
to fully-automated algorithms which is in line with their 
different purpose and characteristics [6]. Based on the 
kappa analysis the agreement between the reference and 
the algorithm results in our study was mostly higher than 
in other studies [19–21] and similar to one other [24]. 
One study used the HELICS definition, the predecessor 
of ECDC’s definition, instead of CLABSI, but as this was 
a semi-automated algorithm their sensitivity was higher 
while their specificity and PPV was much lower than in 
our study [16]. Only two fully-automated algorithms 
were developed in a non-ICU or general hospital popula-
tion [24, 25], using the CLABSI definition. The algorithm 
in the study of Herson et al. [25] had much lower sensi-
tivity compared to our algorithms, but that algorithm 
was mainly based on diagnosis codes which is known to 
have poor sensitivity [34]. In the study of Woeltje et  al. 
[24], their best performing algorithm, using culture, 
central line and fever data, achieved a higher sensitivity 
and lower specificity compared to the algorithms in this 
study. This difference might be explained by the different 
definitions used. CDC’s CLABSI definition [30] is a more 
non-specific definition compared to ECDC’s CRI3-CVC 
definition [27] and primarily works by excluding other 
sources of infection instead of linking it to the CVC, 
which is reflected in the algorithm rules used. Weak-
nesses in data quality, lack of documentation or reduced 
testing could more easily lead to more non-infected 
patients being classified as having an infection, both 
by manual review and algorithms, which consequently 
boosts the sensitivity for CLABSI-based algorithms. In 
contrast, infection is more difficult to ascertain for CRI3-
CVC, both by manual review and algorithms, which 
could boost the specificity for these algorithms.

For the fully-automated algorithms CVC-BSI rates 
were either close to the true rates [24, 25] or overes-
timated [17, 19]. One can argue that for surveillance 
purposes it is not crucial whether the infection rate is 
over- or understated since it should primarily, as empha-
sised by Kaiser et al. [14], demonstrate changes in infec-
tion rates over time. However, an estimated rate close to 
the true rate would provide a better estimation of the true 
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burden. In this study, the rates generated by both algo-
rithms were close to the true rates. Due to high accuracy 
of the algorithms, they could possibly even be used for 
identifying individual patients for targeted interventions.

The rates of HA CVC-BSI by number of positive BCx 
or number of admissions in this study, 1.8% and 0.13%, 
is lower than what has been presented in the other stud-
ies which developed algorithms where these rates ranged 
from 6% till 36% and 0.64% till 6.2%, respectively [14–16, 
19–22, 24]. Partly this might be explained by the fact that 
most rates were from the ICU instead of the total hospi-
tal population. However, also here the difference in defi-
nition of CVC-BSI used might play a role, as the CLABSI 
definition used in these studies in general gives higher 
rates of CVC-BSI than the CRI3-CVC definition used in 
this study [35, 36]. Usually, the incidence of CVC-BSI is 
expressed by catheter-days. As catheter-days could not 
reliable be obtained from structured data in our study, in-
patient hospital-days were used as alternative. Our rate of 
HA-CVC-BSI of 0.20 per 1000 in-patient hospital-days is 
similar to the 0.20 per 1000 patient-days in a recent study 
in Spain which used the CRBSI definition which is fairly 
similar to the ECDC definition, but also included BSI 
related to peripheral venous catheters (PVC) [37].

The results of the second algorithm were plotted over 
a four-year period as a use-case for automated surveil-
lance. It shows that it potentially could be used to indi-
cate failure in infection prevention and control during 
strained healthcare situations like the COVID-19 pan-
demic. It also demonstrates the importance of showing 
both all CVC-BSI and HA CVC-BSI cases as, as men-
tioned above, one measures the overall burden and the 
other the part possibly preventable by the hospital itself. 
Subsequently, a change in the portion of HA CVC-BSI 
cases can indicate a change in the composition of the 
hospital population.

This study has several strengths. The study used a 
large dataset representative for the clinical population 
for which the algorithms are designed. Also, implemen-
tation in real life is facilitated as comprehensive EHR 
data was used. Furthermore, the algorithms have been 
validated on a separate dataset than the dataset used for 
development, in contrast to most of the previous studies, 
which increases the generalisability of the results [34, 38]. 
In addition, annotators were blinded to the algorithm 
results to prevent this from affecting their assessment 
while annotating the validation dataset. Finally, the inter-
national recognised and established criteria of ECDC and 
CDC were used for algorithm development and valida-
tion, and manual annotation was performed according 
to ECDC’s definition which increases the comparability 
and generalisability with other studies. However, some 
limitations should also be considered. The algorithms 

have not been validated in the obstetric population. 
However, hardly any positive BCx were present during 
obstetric admissions, so this would probably not greatly 
influence the results. The developed algorithms focus 
only on microbiologically confirmed CVC-BSI based 
on the CRI3-CVC definition and not on local, general, 
or non-microbiology confirmed CVC-related infection 
(CRI1-CVC, CRI2-CVC, or C-CVC) nor on PVC-related 
infections which are also important infections. Conse-
quently, the true burden of CVC-BSI is probably under-
estimated, and the burden of all CRI is not measured. 
Even though a different dataset was used for the devel-
opment and validation, they were coming from a simi-
lar population and therefore, the algorithms still need to 
be validated in other settings and EHR systems to bet-
ter assess their generalisability. As in this study setting, 
neither the semi-quantitative method for CVC cultures 
nor the quantitative blood culture ratio between central 
and peripheral blood samples is determined, these crite-
ria were not incorporated in the algorithms and need to 
be added and validated in settings where these methods 
are used. Although comprehensive EHR data was used, 
implementation and evaluation in real life settings is still 
needed. While these developed fully-automated surveil-
lance algorithms could replace manual surveillance, it 
remains important to consider that due to changes in 
methods and reporting over time they still need regular 
readjustment and revalidation. It is likely that the CVC-
BSI rates, by both manual review and the algorithms, 
underestimated the ‘true’ rate as patients are possibly not 
cultured appropriately (e.g., no BCx taken while symp-
toms are present). Finally, wrong or missing information 
in the EHR system could have influenced algorithm per-
formance, but this affects manual surveillance in a similar 
fashion.

Conclusions
The present study indicates that it is possible to develop 
an algorithm based on ECDC’s definition of CVC-BSI 
(CRI3-CVC) that is appropriate for continuous auto-
mated surveillance purposes and performs well in 
comparison to manual record review and previously 
developed algorithms using CDC’s CLABSI criteria. The 
simpler algorithm, only using microbiology data, can be 
used in settings with testing for CVC-BSI adhering to 
recommendations. However, in other settings the algo-
rithm including symptom data might need to be applied 
and further validation of both algorithms in other settings 
is needed to assess the generalisability of the algorithms.
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