CDC. Antibiotic Resistance Threats in the United States, 2019. Atlanta: U.S. Department of Health and Human Services, CDC; 2019. Available online: The full 2019 AR Threats Report, including methods and appendices, is available online at www.cdc.gov/DrugResistance/Biggest-Threats.html.
World Health Organization Antimicrobial resistance: global report on surveillance 2014. Geneva: WHO; 2014.
Kaye KS, Pogue JM. Infections Caused by Resistant Gram-Negative Bacteria: Epidemiology and Management. Pharmacotherapy. 2015; 35(10):949–62.
Article
CAS
PubMed
Google Scholar
Colello R, Etcheverría AI, Di Conza JA, Gutkind GO, Padola NL. Antibiotic resistance and integrons in shiga toxin-producing Escherichia coli (STEC). Braz J Microbiol. 2015; 46(1):1–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Begum J, Mir NA, Dev K, Khan IA. Dynamics of antibiotic resistance with special reference to Shiga toxin-producing Escherichia coli infections. J Appl Microbiol. 2018; 125(5):1228–37.
Article
CAS
PubMed
Google Scholar
CDC. E. coli (Escherichia coli) Prevention. Atlanta: U.S. Department of Health and Human Services, CDC; 2017. Available online at https://www.cdc.gov/ecoli/ecoli-prevention.html.
Thaden JT, Fowler VG, Sexton DJ, Anderson DJ. Increasing Incidence of Extended-Spectrum β -Lactamase-Producing Escherichia coli in Community Hospitals throughout the Southeastern United States. Infect Control Hosp Epidemiol. 2016; 37(1):49–54.
Article
PubMed
Google Scholar
Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: An overview. Int J Environ Res Public Health. 2013; 10(12):6235–54.
Article
PubMed
PubMed Central
Google Scholar
Kaushik M, Kumar S, Kapoor RK, Gulati P. Integrons and antibiotic resistance genes in water-borne pathogens: threat detection and risk assessment. J Med Microbiol. 2019; 68(5):679–92.
Article
CAS
PubMed
Google Scholar
Saliu E, Vahjen W, Zentek J. Types and prevalence of extended–spectrum beta–lactamase producing Enterobacteriaceae in poultry. Anim Health Res Rev. 2017; 18(1):46–57.
Article
PubMed
Google Scholar
Yamaji R, Friedman CR, Rubin J, Suh J, Thys E, McDermott P. A Population-Based Surveillance Study of Shared Genotypes of Escherichia coli Isolates from Retail Meat and Suspected Cases of Urinary Tract Infections. mSphere. 2018; 3(4):1–12.
Article
Google Scholar
Raphael E, Wong LK, Riley LW. Extended-Spectrum Beta-Lactamase Gene Sequences in Gram-Negative Saprophytes on Retail Organic and Nonorganic Spinach. Appl Environ Microbiol. 2011; 77(5):1601–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sapkota S, Adhikari S, Pandey A, Khadka S, Adhikari M, Kandel H, et al.Multi-drug resistant extended-spectrum beta-lactamase producing E. coli and Salmonella on raw vegetable salads served at hotels and restaurants in Bharatpur, Nepal. BMC Res Notes. 2019; 12(1):516.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al.Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016; 37(11):1288–301.
Article
PubMed
PubMed Central
Google Scholar
Donskey CJ. The Role of the Intestinal Tract as a Reservoir and Source for Transmission of Nosocomial Pathogens. Clin Infect Dis. 2004; 07;39(2):219–26.
Article
Google Scholar
Carlet J. The gut is the epicentre of antibiotic resistance. Antimicrob Resist Infect Control. 2012; 1(1):39.
Article
PubMed
PubMed Central
Google Scholar
Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: Toward the globalization of CTX-M. Clin Microbiol Rev. 2013; 26(4):744–58.
Article
PubMed
PubMed Central
Google Scholar
Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and meta-analysis. BMJ (Online). 2010; 340(7756):1120.
Google Scholar
Karanika S, Karantanos T, Arvanitis M, Grigoras C, Mylonakis E. Fecal Colonization with Extended-spectrum Beta-lactamase-Producing Enterobacteriaceae and Risk Factors among Healthy Individuals: A Systematic Review and Metaanalysis. Clin Infect Dis. 2016; 63(3):310–8.
Article
PubMed
Google Scholar
Woerther PL, Andremont A, Kantele A. Travel-acquired ESBL-producing Enterobacteriaceae: impact of colonization at individual and community level. J Travel Med. 2017; 24(1):S29–34.
Article
PubMed
PubMed Central
Google Scholar
Cornejo-Juárez P, Vilar-Compte D, Pérez-Jiménez C, Ñamendys-Silva SA, Sandoval-Hernández S, Volkow-Fernández P. The impact of hospital-acquired infections with multidrug-resistant bacteria in an oncology intensive care unit. Int J Infect Dis. 2015; 31:e31–e34.
Article
Google Scholar
Sabir N, Ikram A, Zaman G, Satti L, Gardezi A, Ahmed A, et al.Bacterial biofilm-based catheter-associated urinary tract infections: Causative pathogens and antibiotic resistance. Am J Infect Control. 2017; 45(10):1101–5.
Article
PubMed
Google Scholar
Nguyen DB, Shugart A, Lines C, Shah AB, Edwards J, Pollock D, et al.National Healthcare Safety Network (NHSN) Dialysis Event Surveillance Report for 2014. Clin J Am Soc Nephrol. 2017; 12(7):1139–46.
Article
PubMed
PubMed Central
Google Scholar
Barlow M. In: Gogarten MB, Gogarten JP, Olendzenski LC, (eds).What Antimicrobial Resistance Has Taught Us About Horizontal Gene Transfer. Totowa: Humana Press; 2009, pp. 397–411.
Google Scholar
Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae: Risk Factors for Infection and Impact of Resistance on Outcomes. Clin Infect Dis. 2001; 04;32(8):1162–71.
Article
Google Scholar
Nepal K, Pant ND, Neupane B, Belbase A, Baidhya R, Shrestha RK, et al.Extended spectrum beta-lactamase and metallo beta-lactamase production among Escherichia coli and Klebsiella pneumoniae isolated from different clinical samples in a tertiary care hospital in Kathmandu, Nepal. Ann Clin Microbiol Antimicrob. 2017; 16(1):1–7.
Article
CAS
Google Scholar
Nordmann P, Naas T, Poirel L. Global Spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011; 17(10):1791–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al.Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. mBio. 2017; 8(3). e0054317.
Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al.Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015; 4(1):1.
Article
PubMed
PubMed Central
Google Scholar
Covidence systematic review software. Melbourne: Veritas Health Innovation; 2019. Available at www.covidence.org.
Mantel N, Haenszel W. Statistical Aspects of the Analysis of Data From Retrospective Studies of Disease. J Natl Cancer Inst. 1959; 04;22(4):719–48.
Google Scholar
Van Houwelingen HC, Zwinderman KH, Stijnen T. A bivariate approach to metaanalysis. Stat Med. 1993; 12(24):2273–84.
Article
CAS
PubMed
Google Scholar
Inthout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014; 14(1):1–12.
Article
Google Scholar
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315(7109):629–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: A Language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. https://www.r-project.org/.
Google Scholar
Schwarzer G. meta: An R package for meta-analysis. R News. 2007; 7(3):40–5.
Google Scholar
Arcilla MS, van Hattem JM, Haverkate MR, Bootsma MCJ, van Genderen PJJ, Goorhuis A, et al.Import and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis. 2017; jan;17(1):78–85.
Article
Google Scholar
Angelin M, Forsell J, Granlund M, Evengard B, Palmgren H, Johansson A. Risk factors for colonization with extended-spectrum beta-lactamase producing Enterobacteriaceae in healthcare students on clinical assignment abroad: A prospective study. Travel Med Infect Dis. 2015; 13(3):223–29.
Article
PubMed
Google Scholar
Caudell MA, Mair C, Subbiah M, Matthews L, Quinlan RJ, Quinlan MB, et al.Identification of risk factors associated with carriage of resistant Escherichia coli in three culturally diverse ethnic groups in Tanzania: a biological and socioeconomic analysis. Lancet Planet Health. 2018; 2(11):e489–97.
Article
PubMed
PubMed Central
Google Scholar
Dohmen W, Van Gompel L, Schmitt H, Liakopoulos A, Heres L, Urlings BA, et al.ESBL carriage in pig slaughterhouse workers is associated with occupational exposure. Epidemiol Infect. 2017; jul;145(10):2003–10.
Article
CAS
Google Scholar
Dohmen W, Schmitt H, Bonten M, Heederik D. Air exposure as a possible route for ESBL in pig farmers. Environ Res. 2017; may;155:359–64.
Article
CAS
Google Scholar
Lübbert C, Straube L, Stein C, Makarewicz O, Schubert S, Mössner J, et al.Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int J Med Microbiol. 2015; 305(1):148–56.
Article
PubMed
Google Scholar
McNulty CAM, Lecky DM, Xu-McCrae L, Nakiboneka-Ssenabulya D, Chung K, Nichols T, et al.CTX-M ESBL-producing Enterobacteriaceae: estimated prevalence in adults in England in 2014. J Antimicrob Chemother. 2018; 73(5):1368–88. https://0-doi-org.brum.beds.ac.uk/10.1093/jac/dky007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miranda IB, Ignatius R, Pfüller R, Friedrich-Jänicke B, Steiner F, Paland M, et al.High carriage rate of ESBL-producing Enterobacteriaceae at presentation and follow-up among travellers with gastrointestinal complaints returning from India and Southeast Asia. J Travel Med. 2016; 23(2):tav024. https://0-doi-org.brum.beds.ac.uk/10.1093/jtm/tav024.
Article
Google Scholar
Mo Y, Seah I, Lye PSP, Kee XLJ, Wong KYM, Ko KKK, et al.Relating knowledge, attitude and practice of antibiotic use to extended-spectrum beta-lactamase-producing Enterobacteriaceae carriage: results of a cross-sectional community survey. BMJ open. 2019; 9(3):e023859.
Article
PubMed
PubMed Central
Google Scholar
Reuland EA, Naiemi NA, Kaiser AM, Heck M, Kluytmans JAJW, Savelkoul PHM, et al.Prevalence and risk factors for carriage of ESBL-producing Enterobacteriaceae in Amsterdam. J Antimicrob Chemother. 2016; 71(4):1076–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reuland EA, Halaby T, Hays JP, de Jongh DMC, Snetselaar HDR, van Keulen M, et al.Plasmid-mediated AmpC: prevalence in community-acquired isolates in Amsterdam, the Netherlands, and risk factors for carriage. PloS One. 2015; 10(1):e0113033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruh E, Zakka J, Hoti K, Fekrat A, Guler E, Gazi U, et al.Extended-spectrum β-lactamase, plasmid-mediated AmpC β-lactamase, fluoroquinolone resistance, and decreased susceptibility to carbapenems in Enterobacteriaceae: Fecal carriage rates and associated risk factors in the community of Northern Cyprus. Antimicrob Resist Infect Control. 2019; 8(1). https://0-doi-org.brum.beds.ac.uk/10.1186/s13756-019-0548-9.
Sanneh B, Kebbeh A, Jallow HS, Camara Y, Mwamakamba LW, Ceesay IF, et al.Prevalence and risk factors for faecal carriage of Extended Spectrum β-lactamase producing Enterobacteriaceae among food handlers in lower basic schools in West coast region of the Gambia. PloS One. 2018; 13(8). e0200894.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vading M, Kabir MH, Kalin M, Iversen A, Wiklund S, Naucler P, et al.Frequent acquisition of low-virulence strains of ESBL-producing Escherichia coli in travellers. J Antimicrob Chemother. 2016; 71(12):3548–55.
Article
CAS
PubMed
Google Scholar
Wielders CCH, van Hoek AHAM, Hengeveld PD, Veenman C, Dierikx CM, Zomer TP, et al.Extended-spectrum β-lactamase- and pAmpC-producing Enterobacteriaceae among the general population in a livestock-dense area. Clin Microbiol Infect. 2017; 23(2):120.e1–8.
Article
CAS
Google Scholar
Butcher CR, Rubin J, Mussio K, Riley LW. Risk Factors Associated with Community-Acquired Urinary Tract Infections Caused by Extended-Spectrum β-Lactamase-Producing Escherichia coli: a Systematic Review. Curr Epidemiol Rep. 2019; 6(3):300–9.
Article
Google Scholar
Nielsen KL, Stegger M, Kiil K, Godfrey PA, Feldgarden M, Lilje B, et al.Whole-genome comparison of urinary pathogenic Escherichia coli and faecal isolates of UTI patients and healthy controls. Int J Med Microbiol. 2017; 307(8):497–507.
Article
PubMed
PubMed Central
Google Scholar
Thänert R, Reske KA, Hink T, Wallace MA, Wang B, Schwartz DJ, et al.Comparative Genomics of Antibiotic-Resistant Uropathogens Implicates Three Routes for Recurrence of Urinary Tract Infections. mBio. 2019; 10(4):1–16.
Article
Google Scholar
Zurfluh K, Nüesch-Inderbinen M, Morach M, Berner AZ, Hächler H, Stephan R. Extended-Spectrum- β-Lactamase-Producing Enterobacteriaceae Isolated from Vegetables Imported from the Dominican Republic, India, Thailand, and Vietnam. Appl Environ Microbiol. 2015; 81(9):3115–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jongman M, Korsten L. Genetic Diversity and Antibiotic Resistance of Escherichia coli Isolates from Different Leafy Green Production Systems. J Food Protect. 2016; 79(11):1846–53.
Article
CAS
Google Scholar