World Health Organization. Global Health Sector Strategy On Sexually Transmitted Infections, 2016–2021; Towards Ending STIs. Geneva: WHO; 2016.
Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, O'Brien TF, et al. Antimicrobial resistance in developing countries. Part I: recent trends and current status. Lancet Infect Dis. 5(8):481–93. https://0-doi-org.brum.beds.ac.uk/10.1016/s1473-3099(05)70189-4.
Namraj Goire MML, Chen M, Donovan B, Christopher K, Fairley RG, Kaldor J, Regan D, Ward J, Nissen MD, Sloots TP, Whiley DM. Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol. 2014;12:223–9. https://0-doi-org.brum.beds.ac.uk/10.1038/nrmicro3217.
Article
CAS
PubMed
Google Scholar
Amanda B. Gonorrhea. 2008. http://www.austincc.edu/microbio/2704w/ng.htm Accessed 22 Mar 2018.
WHO. Sexual and reproductive health: WHO; 2017. http://www.who.int/reproductivehealth/topics/rtis/amr-gonorrhoea-on-the-rise/en/ Accessed 22 Mar 2018.
Bodoev IN, Il'ina EN. Molecular mechanisms of drug resistance Neisseria Gonorrhoeae history and prospects. Mol Gen Mikrobiol Virusol. 2015;33(3):22–7.
CAS
PubMed
Google Scholar
Achchhe Lal Patel UC, Sachdev D, Sachdeva PN, Bala M, Saluja D. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae. Indian J Med Res. 2011;134(4):419–31.
PubMed
PubMed Central
Google Scholar
Lancaster JW, Mahoney MV, Mandal S, Lawrence KR. Update on treatment options for Gonococcal infections. Pharmacotherapy. 2015;35(9):856–68.
PubMed
Google Scholar
Ezewudo MN, Joseph SJ, Castillo-Ramirez S, Dean D, del Rio C, Didelot X, et al. Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance. PeerJ. 2015;3:e806. https://0-doi-org.brum.beds.ac.uk/10.7717/peerj.806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014;27(3):587–613.
CAS
PubMed
PubMed Central
Google Scholar
McConnell J. ASM Microbe 2017; 2017. p. 1.
Google Scholar
WHO. Sexual and reproductive health 2015. http://www.who.int/reproductivehealth/news/stis-estimates-2015/en/ Accessed 22 Mar 2018.
Google Scholar
Wi T, Lahra MM, Ndowa F, Bala M, Dillon JR, Ramon-Pardo P, et al. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med. 2017;14(7):e1002344. https://pubmed.ncbi.nlm.nih.gov/28686231/.
Brunner A, Nikodem E, Jeney C, Szabo D, Marschalko M, Karpati S, et al. Emerging azithromycin-resistance among the Neisseria gonorrhoeae strains isolated in Hungary. Ann Clin Microbiol Antimicrob. 2016;15(53):6. https://0-doi-org.brum.beds.ac.uk/10.1186/s12941-016-0166-9.
Article
CAS
Google Scholar
APRd C-L, Barros dos Santos KT, Moreira BM, SEL F, Bonelli RR. Antimicrobial resistance in Neisseria gonorrhoeae: history, molecular mechanisms and epidemiological aspects of an emerging global threat. Braz J Microbiol. 2017;48(4):617–28. https://0-doi-org.brum.beds.ac.uk/10.1016/j.bjm.2017.06.001.
Article
CAS
Google Scholar
Belkacem A, Jacquier H, Goubard A, Mougari F, La Ruche G, Patey O, et al. Molecular epidemiology and mechanisms of resistance of azithromycin-resistant Neisseria gonorrhoeae isolated in France during 2013–14. J Antimicrob Chemother. 2016;71(9):2471–8. https://0-doi-org.brum.beds.ac.uk/10.1093/jac/dkw182.
Article
CAS
PubMed
Google Scholar
Cole MJ, Spiteri G, Jacobsson S, Pitt R, Grigorjev V, Unemo M. Is the tide turning again for cephalosporin resistance in Neisseria gonorrhoeae in Europe? Results from the 2013 European surveillance. BMC Infect Dis. 2015;15(321):015–1013.
Google Scholar
Buder S, Dudareva S, Jansen K, Loenenbach A, Nikisins S, Sailer A, et al. Antimicrobial resistance of Neisseria gonorrhoeae in Germany: low levels of cephalosporin resistance, but high azithromycin resistance. BMC Infect Dis. 2018;18(1):018–2944.
Google Scholar
Bercot B, Belkacem A, Goubard A, Mougari F, Sednaoui P, La Ruche G, et al. High-level azithromycin-resistant Neisseria gonorrhoeae clinical isolate in France, march 2014. Euro Surveill. 2014;19:44.
Google Scholar
Liu YH, Huang YT, Liao CH, Hsueh PR. Antimicrobial susceptibilities and molecular typing of neisseria gonorrhoeae isolates at a medical Centre in Taiwan, 2001-2013 with an emphasis on high rate of azithromycin resistance among the isolates. Int J Antimicrob Agents. 2018;22(18):30035–9.
Google Scholar
Lahra MM, Enriquez RP. Australian Gonococcal surveillance Programme, 1 July to 30 September 2015. Commun Dis Intell Q Rep. 2016;40(1):E179–81.
PubMed
Google Scholar
KIM M, WELCH, Tanis. Update on azithromycin and cardiac side effects. The Southwest Respiratory and Critical Care Chronicles, [S.l.], v. 2, n. 5, p. 48–51, dec. 2013.ISSN 2325–9205. 2018. http://pulmonarychronicles.com/index.php/pulmonarychronicles/article/view/107/224. Accessed 7 April 2018.
Unemo M, Del Rio C, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol Spectr. 2016;4(3):0009–2015.
Google Scholar
Kulkarni SV, Bala M, Muqeeth SA, Sasikala G, Nirmalkar AP, Thorat R, et al. Antibiotic susceptibility pattern of Neisseria gonorrhoeae strains isolated from five cities in India during 2013-2016. J Med Microbiol. 2018;67(1):22–8.
CAS
PubMed
Google Scholar
Wind CM, van der Loeff MF S, van Dam AP, de Vries HJ, van der Helm JJ. Trends in antimicrobial susceptibility for azithromycin and ceftriaxone in Neisseria gonorrhoeae isolates in Amsterdam, the Netherlands, between 2012 and 2015. Euro Surveill. 2017;22(1):1560–7917.
Google Scholar
Brunner A, Nemes-Nikodem E, Mihalik N, Marschalko M, Karpati S, Ostorhazi E. Incidence and antimicrobial susceptibility of Neisseria gonorrhoeae isolates from patients attending the national Neisseria gonorrhoeae reference laboratory of Hungary. BMC Infect Dis. 2014;14(433):1471–2334.
Google Scholar
Papp JR, Abrams AJ, Nash E, Katz AR, Kirkcaldy RD, O'Connor NP, et al. Azithromycin resistance and decreased ceftriaxone susceptibility in Neisseria gonorrhoeae, Hawaii. USA Emerg Infect Dis. 2017;23(5):830–2.
CAS
PubMed
Google Scholar
Nemes-Nikodem E, Brunner A, Toth B, Toth V, Banvolgyi A, Ostorhazi E. Antimicrobal resistance of Neisseria gonorrhoeae strains in Hungary. Orv Hetil. 2015;156(6):226–9.
PubMed
Google Scholar
Regnath T, Mertes T, Ignatius R. Antimicrobial resistance of Neisseria gonorrhoeae isolates in south-West Germany, 2004 to 2015: increasing minimal inhibitory concentrations of tetracycline but no resistance to third-generation cephalosporins. Euro Surveill. 2016;21(36):1560–7917.
Google Scholar
Mehta SD, Maclean I, Ndinya-Achola JO, Moses S, Martin I, Ronald A, et al. Emergence of quinolone resistance and cephalosporin MIC creep in Neisseria gonorrhoeae isolates from a cohort of young men in Kisumu, Kenya, 2002 to 2009. Antimicrob Agents Chemother. 2011;55(8):3882–8.
CAS
PubMed
PubMed Central
Google Scholar
Latif AS, Gwanzura L, Machiha A, Ndowa F, Tarupiwa A, Gudza-Mugabe M, et al. Antimicrobial susceptibility in Neisseria gonorrhoeae isolates from five sentinel surveillance sites in Zimbabwe, 2015-2016. Sex Transm Infect. 2018;94(1):62–6.
PubMed
Google Scholar
Vandepitte J, Hughes P, Matovu G, Bukenya J, Grosskurth H, Lewis DA. High prevalence of ciprofloxacin-resistant gonorrhea among female sex workers in Kampala, Uganda (2008-2009). Sex Transm Dis. 2014;41(4):233–7.
CAS
PubMed
Google Scholar
Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, Gonzalez IJ, et al. Antimicrobial resistance in Africa: a systematic review. BMC Infect Dis. 2017;17(1):017–2713.
Google Scholar
Leopold SJ, van Leth F, Tarekegn H, Schultsz C. Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: a systematic review. J Antimicrob Chemother. 2014;69(9):2337–53.
CAS
PubMed
Google Scholar
Liang JY, Cao WL, Li XD, Bi C, Yang RD, Liang YH, et al. Azithromycin-resistant Neisseria gonorrhoeae isolates in Guangzhou, China (2009-2013): coevolution with decreased susceptibilities to ceftriaxone and genetic characteristics. BMC Infect Dis. 2016;16(152):016–1469.
Google Scholar
Li W, Zhu BY, Qin SQ, Yang MC, Liang M, He S, et al. Surveillance of antimicrobial susceptibilities of Neisseria gonorrhoeae from 2013 to 2015 in Guangxi Province, China. Jpn J Infect Dis. 2017;26(10):169.
Google Scholar
Jiang F-X, Lan Q, Le W-J, Su X-H. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from Hefei (2014–2015): genetic characteristics of antimicrobial resistance. BMC Infect Dis. 2017;17:366. https://0-doi-org.brum.beds.ac.uk/10.1186/s12879-017-2472-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin YP, Han Y, Dai XQ, Zheng HP, Chen SC, Zhu BY, et al. Susceptibility of Neisseria gonorrhoeae to azithromycin and ceftriaxone in China: A retrospective study of national surveillance data from 2013 to 2016. PLoS Med. 2018;15(2):e1002499. https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/pmc/articles/PMC5800545/.
Cole MJ, Spiteri G, Chisholm SA, Hoffmann S, Ison CA, Unemo M, et al. Emerging cephalosporin and multidrug-resistant gonorrhoea in Europe. Euro Surveill. 2014;19(45):20955.
CAS
PubMed
Google Scholar
Kirkcaldy RD, Soge O, Papp JR, Hook EW 3rd, del Rio C, Kubin G, et al. Analysis of Neisseria gonorrhoeae azithromycin susceptibility in the United States by the Gonococcal isolate surveillance project, 2005 to 2013. Antimicrob Agents Chemother. 2015;59(2):998–1003.
PubMed
PubMed Central
Google Scholar
Mlynarczyk-Bonikowska B, Kujawa M, Mlynarczyk G, Malejczyk M, Majewski S. Resistance to azithromycin of Neisseria gonorrhoeae strains isolated in Poland in 2012-2013 years. Med Dosw Mikrobiol. 2014;66(3–4):209–14.
PubMed
Google Scholar
Dillon J-AR, Trecker MA, Thakur SD. Two decades of the gonococcal antimicrobial surveillance program in South America and the Caribbean: challenges and opportunities. Sex Transm Infect. 2014;89:36–41.
Google Scholar
Unemo M, Workowski K. Dual antimicrobial therapy for gonorrhoea: what is the role of azithromycin? Lancet Infect Dis. 2018;6(18):30162.
Google Scholar
Fauci B, Kasper H, Longo J, et al. Harrison's PRINCIPLES OF INTERNAL MEDICINE. Gonococcal infections. US: The McGraw-Hill Companies; 2008.
Google Scholar
Warren L. Review of medical Microbiology and immunology. 1oth ed. gram negative Cocci. United States of America: The McGraw-Hill Companies; 2008.
Google Scholar
Wu A, Buono S, Katz KA, Pandori MW. Clinical Neisseria gonorrhoeae isolates in the United States with resistance to azithromycin possess mutations in all 23S rRNA alleles and the mtrR coding region. Microb Drug- Resist. 2011;17(3):425–7.
CAS
PubMed
Google Scholar
Chisholm SA, Ison C. Emergence of high-level azithromycin resistance in Neisseria gonorrhoeae in England and Wales. Euro Surveill. 2008;13:15.
Google Scholar
Chisholm SA, Dave J, Ison CA. High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. Antimicrob Agents Chemother. 2010;54(9):3812–6.
CAS
PubMed
PubMed Central
Google Scholar
Wind CM, de Vries E, van der Loeff MF S, van Rooijen MS, van Dam AP, WHB D, et al. Decreased azithromycin susceptibility of Neisseria gonorrhoeae isolates in patients recently treated with azithromycin. Clin Infect Dis. 2017;65(1):37–45.
CAS
PubMed
Google Scholar
Shigemura K, Osawa K, Miura M, Tanaka K, Arakawa S, Shirakawa T, et al. Azithromycin resistance and its mechanism in Neisseria gonorrhoeae strains in Hyogo, Japan. Antimicrob Agents Chemother. 2015;59(5):2695–9.
CAS
PubMed
PubMed Central
Google Scholar
Shigemura K, Osawa K, Miura M, Tanaka K, Arakawa S, Shirakawa T, et al. Azithromycin Resistance and Its Mechanism in Neisseria gonorrhoeae Strains in Hyogo, Japan. Antimicrobial Agents Chemother. 2015;59(5):2695–9. https://0-doi-org.brum.beds.ac.uk/10.1128/aac.04320-14.
Article
CAS
Google Scholar
Su XH, Wang BX, Le WJ, Liu YR, Wan C, Li S, et al. Multidrug-resistant Neisseria gonorrhoeae isolates from Nanjing, China, are sensitive to killing by a novel DNA Gyrase inhibitor, ETX0914 (AZD0914). Antimicrob Agents Chemother. 2015;60(1):621–3.
PubMed
PubMed Central
Google Scholar
Martin I, Sawatzky P, Liu G, Allen V, Lefebvre B, Hoang L, et al. Decline in decreased cephalosporin susceptibility and increase in azithromycin resistance in Neisseria gonorrhoeae, Canada. Emerg Infect Dis. 2016;22(1):65–7.
CAS
PubMed
PubMed Central
Google Scholar
Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, et al. Genomic epidemiology of Gonococcal resistance to extended-Spectrum Cephalosporins, macrolides, and Fluoroquinolones in the United States, 2000-2013. J Infect Dis. 2016;214(10):1579–87.
CAS
PubMed
PubMed Central
Google Scholar
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; 29th Ed. CLSI document M100. 2019.
Google Scholar
Khan Z, Siddiqui M, Park S. Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics. 2019;9(49). https://0-doi-org.brum.beds.ac.uk/10.3390/diagnostics9020049.
Lewis DA. Global resistance of Neisseria gonorrhoeae: when theory becomes reality. Curr Opin Infect Dis. 2014;27(1):62–7.
CAS
PubMed
Google Scholar
Clifton S, Bolt H, Mohammed H, Town K, Furegato M, Cole M, et al. Prevalence of and factors associated with MDR Neisseria gonorrhoeae in England and Wales between 2004 and 2015: analysis of annual cross-sectional surveillance surveys. J Antimicrob Chemother. 2018;73(4):923–32.
Hauser C, Hirzberger L, Unemo M, Furrer H, Endimiani A. In vitro activity of fosfomycin alone and in combination with ceftriaxone or azithromycin against clinical Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother. 2015;59(3):1605–11.
PubMed
PubMed Central
Google Scholar
Pettus K, Sharpe S, Papp JR. In vitro assessment of dual drug combinations to inhibit growth of Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2015;59(4):2443–5.
CAS
PubMed
PubMed Central
Google Scholar
Hook IIIEW, Golden M, Jamieson BD, Dixon PB, Harbison HS, Lowens S, et al. A phase 2 trial of Oral Solithromycin 1200 mg or 1000 mg as single-dose Oral therapy for uncomplicated Gonorrhea. Clin Infect Dis. 2015;61(7):1043–8. https://0-doi-org.brum.beds.ac.uk/10.1093/cid/civ478.
Article
PubMed
Google Scholar
Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol. 2018;16(4):226–40.
CAS
PubMed
PubMed Central
Google Scholar