CDC: Centers for Disease Control and Prevention-Antibiotic resistance threats in the United States. 2013.
Google Scholar
Buhl M, Peter S, Willmann M. Prevalence and risk factors associated with colonization and infection of extensively drug-resistant Pseudomonas aeruginosa: a systematic review. Expert Rev Anti-Infect Ther. 2015;13:1159–70.
Article
CAS
PubMed
Google Scholar
Wieland K, Chhatwal P, Vonberg RP. Nosocomial outbreaks caused by Acinetobacter baumannii and Pseudomonas aeruginosa: results of a systematic review. Am J Infect Control. 2018;46:643–8.
Article
PubMed
Google Scholar
Fochtmann-Frana A, Freystatter C, Vorstandlechner V, Barth A, Bolliger M, Presterl E, et al. Incidence of risk factors for bloodstream infections in patients with major burns receiving intensive care: a retrospective single-center cohort study. Burns. 2018;44:784–92.
Article
PubMed
Google Scholar
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011;2:65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wendel AF, Brodner AH, Wydra S, Ressina S, Henrich B, Pfeffer K, et al. Genetic characterization and emergence of the metallo-beta-lactamase GIM-1 in Pseudomonas spp. and Enterobacteriaceae during a long-term outbreak. Antimicrob Agents Chemother. 2013;57:5162–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis. 2011;11:381–93.
Article
CAS
PubMed
Google Scholar
Walsh TR. Emerging carbapenemases: a global perspective. Int J Antimicrob Agents. 2010;36(Suppl 3):S8–14.
Article
CAS
PubMed
Google Scholar
Botelho J, Grosso F, Quinteira S, Brilhante M, Ramos H, Peixe L. Two decades of blaVIM-2-producing Pseudomonas aeruginosa dissemination: an interplay between mobile genetic elements and successful clones. J Antimicrob Chemother. 2018;73:873–82.
Article
CAS
PubMed
Google Scholar
Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries. J Antimicrob Chemother. 2014;69:1804–14.
Article
CAS
PubMed
Google Scholar
Wendel AF, Kolbe-Busch S, Ressina S, Schulze-Robbecke R, Kindgen-Milles D, Lorenz C, et al. Detection and termination of an extended low-frequency hospital outbreak of GIM-1-producing Pseudomonas aeruginosa ST111 in Germany. Am J Infect Control. 2015;43:635–9.
Article
PubMed
Google Scholar
Willmann M, Bezdan D, Zapata L, Susak H, Vogel W, Schroppel K, et al. Analysis of a long-term outbreak of XDR Pseudomonas aeruginosa: a molecular epidemiological study. J Antimicrob Chemother. 2015;70:1322–30.
Article
CAS
PubMed
Google Scholar
Schroder C, Schwab F, Behnke M, Breier AC, Maechler F, Piening B, et al. Epidemiology of healthcare associated infections in Germany: nearly 20 years of surveillance. Int J Med Microbiol. 2015;305:799–806.
Article
CAS
PubMed
Google Scholar
Muller J, Voss A, Kock R, Sinha B, Rossen JW, Kaase M, et al. Cross-border comparison of the Dutch and German guidelines on multidrug-resistant gram-negative microorganisms. Antimicrob Resist Infect Control. 2015;4:7.
Article
PubMed
PubMed Central
Google Scholar
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.
Article
CAS
PubMed
Google Scholar
Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43:3129–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fournier D, Garnier P, Jeannot K, Mille A, Gomez AS, Plesiat P. A convenient method to screen for carbapenemase-producing Pseudomonas aeruginosa. J Clin Microbiol. 2013;51:3846–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juan C, Beceiro A, Gutierrez O, Alberti S, Garau M, Perez JL, et al. Characterization of the new metallo-beta-lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain. Antimicrob Agents Chemother. 2008;52:3589–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65:490–5.
Article
CAS
PubMed
Google Scholar
Junemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, et al. Updating benchtop sequencing performance comparison. Nat Biotechnol. 2013;31:294–6.
Article
PubMed
Google Scholar
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wendel AF, Malecki M, Otchwemah R, Tellez-Castillo CJ, Sakka SG, Mattner F. One-year molecular surveillance of carbapenem-susceptible A. baumannii on a German intensive care unit: diversity or clonality. Antimicrob Resist Infect Control. 2018;7:145.
Article
PubMed
PubMed Central
Google Scholar
Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:2233–9.
CAS
PubMed
PubMed Central
Google Scholar
Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.
Article
PubMed
Google Scholar
Gniadek TJ, Carroll KC, Simner PJ. Carbapenem-resistant non-glucose-fermenting gram-negative bacilli: the missing piece to the puzzle. J Clin Microbiol. 2016;54:1700–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev. 2014;78:257–77.
Article
PubMed
PubMed Central
Google Scholar
Pfennigwerth N. Bericht des Nationalen Referenzzentrums (NRZ) für gramnegative Krankenhauserreger – Zeitraum 1. Januar 2017–31. Epidemiologisches Bull. 2017;2018:263–7.
Google Scholar
Kresken MK-I, Korte-Berwanger MB, Pfennigwerth N, Gatermann SG. Dissemination of carbapenem-resistant, carbapenemase-non-producing and carbapenemase-producing Pseudomonas aeruginosa in Germany. Eur Congress Clin Microbiol Infect Dis (ECCMID). 2018. O0124.
De Rosa A, Mutters NT, Mastroianni CM, Kaiser SJ, Gunther F. Distribution of carbapenem resistance mechanisms in clinical isolates of XDR Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2019;38(8):1547–52.
Article
PubMed
Google Scholar
Katchanov J, Asar L, Klupp EM, Both A, Rothe C, Konig C, et al. Carbapenem-resistant Gram-negative pathogens in a German university medical center: Prevalence, clinical implications and the role of novel beta-lactam/beta-lactamase inhibitor combinations. PLoS One. 2018;13:e0195757.
Article
PubMed
PubMed Central
Google Scholar
EUCAST. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/ or epidemiological importance, version 2.0. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf. Accessed 23 Sept 2019.
PHE. UK Standards for Microbiology Investigations: Detection of bacteria with carbapenem-hydrolysing β-lactamases (carbapenemases). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/554654/B_60i2.1.pdf. Accessed 23 Sept 2019.
NRZ. German National Reference Centre for Multidrug-resistant Gram-negative Bacteria: Screening inclusion criteria http://memiserf.medmikro.ruhr-uni-bochum.de/nrz/leistungsspektrum_nrz_carbapenemase-detektion.html. Accessed 23 Sept 2019.
Hopman J, Meijer C, Kenters N, Coolen JPM, Ghamati MR, Mehtar S, et al. Risk assessment after a severe hospital-acquired infection associated with Carbapenemase-producing Pseudomonas aeruginosa. JAMA Netw Open. 2019;2:e187665.
Article
PubMed
PubMed Central
Google Scholar
Zavascki AP, Barth AL, Gaspareto PB, Goncalves AL, Moro AL, Fernandes JF, et al. Risk factors for nosocomial infections due to Pseudomonas aeruginosa producing metallo-beta-lactamase in two tertiary-care teaching hospitals. J Antimicrob Chemother. 2006;58:882–5.
Article
CAS
PubMed
Google Scholar
Ruiz-Garbajosa P, Canton R. Epidemiology of antibiotic resistance in Pseudomonas aeruginosa. Implications for empiric and definitive therapy. Rev Esp Quimioter. 2017;30(Suppl 1):8–12.
PubMed
Google Scholar