Dubin K, Pamer EG. Enterococci and their interactions with the intestinal microbiome. Microbiol Spectr. 2014;5:10.
PubMed Central
Google Scholar
Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol. 2018;41:76–82.
Article
Google Scholar
Lee T, Pang S, Abraham S, Coombs GW. Antimicrobial-resistant CC17 Enterococcus faecium: the past, the present and the future. J Glob Antimicrob Resist. 2019;16:36–47.
Article
Google Scholar
Cattoir V, Giard J-C. Antibiotic resistance in Enterococcus faecium clinical isolates. Expert Rev Anti-Infect Ther. 2014;12:239–48.
Article
CAS
Google Scholar
Marshall SH, Donskey CJ, Hutton-Thomas R, Salata RA, Rice LB. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother. 2002;46:3334–6.
Article
CAS
Google Scholar
Bourgeois-Nicolaos N, Massias L, Couson B, Butel M-J, Andremont A, Doucet-Populaire F. Dose dependence of emergence of resistance to linezolid in Enterococcus faecalis in vivo. J Infect Dis. 2007;195:1480–8.
Article
CAS
Google Scholar
Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother. 2012;56:3917–22.
Article
CAS
Google Scholar
Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015;70:2182–90.
Article
CAS
Google Scholar
Antonelli A, D'Andrea MM, Brenciani A, Galeotti CL, Morroni G, Pollini S, et al. Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin. J Antimicrob Chemother. 2018;73:1763–9.
Article
CAS
Google Scholar
Lee SM, Huh HJ, Song DJ, Shim HJ, Park KS, Kang CI, et al. Resistance mechanisms of linezolid-nonsusceptible enterococci in Korea: low rate of 23S rRNA mutations in Enterococcus faecium. J Med Microbiol. 2017;66:1730–5.
Article
CAS
Google Scholar
McGregor JC, Hartung DM, Allen GP, Taplitz RA, Traver R, Tong T, et al. Risk factors associated with linezolid-nonsusceptible enterococcal infections. Am J Infect Control. 2012;40:886–7.
Article
Google Scholar
Greene MH, Harris BD, Nesbitt WJ, Watson ML, Wright PW, Talbot TR, et al. Risk Factors and Outcomes Associated With Acquisition of Daptomycin and Linezolid-Nonsusceptible Vancomycin-Resistant Enterococcus. Open Forum Infect Dis. 2018;5:ofy185.
Article
Google Scholar
Niebel M, Perera MTPR, Shah T, Marudanayagam R, Martin K, Oppenheim BA, et al. Emergence of linezolid resistance in hepatobiliary infections caused by Enterococcus faecium. Liver Transpl. 2016;22:201–8.
Article
Google Scholar
Ntokou E, Stathopoulos C, Kristo I, Dimitroulia E, Labrou M, Vasdeki A, et al. Intensive care unit dissemination of multiple clones of linezolid-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2012;67:1819–23.
Article
CAS
Google Scholar
Robert-Koch-Institut. Antibiotika-Verbrauchs-Surveillance (Available from: https://avs.rki.de/).
Brenciani A, Morroni G, Vincenzi C, Manso E, Mingoia M, Giovanetti E, et al. Detection in Italy of two clinical Enterococcus faecium isolates carrying both the oxazolidinone and phenicol resistance gene optrA and a silent multiresistance gene cfr. J Antimicrob Chemother. 2016;71:1118–9.
Article
CAS
Google Scholar
Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20:714–37.
Article
CAS
Google Scholar
de Been M, Pinholt M, Top J, Bletz S, Mellmann A, van Schaik W, et al. Core genome multilocus sequence typing scheme for high- resolution typing of Enterococcus faecium. J Clin Microbiol. 2015;53:3788–97.
Article
Google Scholar
Jolley KA, Maiden MC. Using multilocus sequence typing to study bacterial variation: prospects in the genomic era. Future Microbiol. 2014;9:623–30.
Article
CAS
Google Scholar
Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–d73.
Article
CAS
Google Scholar
Hasman H, Clausen P, Kaya H, Hansen F, Knudsen JD, Wang M, et al. LRE-finder, a web tool for detection of the 23S rRNA mutations and the optrA, cfr, cfr(B) and poxtA genes encoding linezolid resistance in enterococci from whole-genome sequences. J Antimicrob Chemother. 2019;74:1473–6.
Article
Google Scholar
Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52:1501–10.
Article
Google Scholar
Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47:D687–d92.
Article
CAS
Google Scholar
Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895–903.
Article
Google Scholar
Hegstad K, Longva JA, Hide R, Aasnaes B, Lunde TM, Simonsen GS. Cluster of linezolid-resistant Enterococcus faecium ST117 in Norwegian hospitals. Scan J Infect Dis. 2014;46:712–5.
Article
Google Scholar
Hammerum AM, Baig S, Kamel Y, Roer L, Pinholt M, Gumpert H, et al. Emergence of vanA Enterococcus faecium in Denmark, 2005–15. J Antimicrob Chemother. 2017;72:2184–90.
Article
CAS
Google Scholar
Zhou X, Chlebowicz MA, Bathoorn E, Rosema S, Couto N, Lokate M, et al. Elucidating vancomycin-resistant Enterococcus faecium outbreaks: the role of clonal spread and movement of mobile genetic elements. J Antimicrob Chemother. 2018;73:3259–67.
CAS
PubMed
Google Scholar
Dobbs TE, Patel M, Waites KB, Moser SA, Stamm AM, Hoesley CJ. Nosocomial spread of Enterococcus faecium resistant to vancomycin and linezolid in a tertiary care medical center. J Clin Microbiol. 2006;44:3368–70.
Article
CAS
Google Scholar
Hayakawa K, Marchaim D, Pogue JM, Ho K, Parveen S, Nanjireddy P, et al. Predictors and outcomes of linezolid-resistant vancomycin-resistant Enterococcus: a case-case-control study. Am J Infect Control. 2012;40:e261–3.
Article
Google Scholar
Chen K-H, Huang Y-T, Liao C-H, Sheng W-H, Hsueh P-R. In vitro activities of Tedizolid and linezolid against gram-positive cocci associated with acute bacterial skin and skin structure infections and pneumonia. Antimicrob Agents Chemother. 2015;59:6262–5.
Article
CAS
Google Scholar
Klupp EM, Both A, Belmar Campos C, Buttner H, Konig C, Christopeit M, et al. Tedizolid susceptibility in linezolid- and vancomycin-resistant Enterococcus faecium isolates. Eur J Clin Microbiol Infect Dis. 2016;35:1957–61.
Article
CAS
Google Scholar
Bi R, Qin T, Fan W, Ma P, Gu B. The emerging problem of linezolid-resistant enterococci. J Glob Antimicrob Resist. 2018;13:11–9.
Article
Google Scholar
Ye M, Xu L, Zou Y, Li B, Guo Q, Zhang Y, et al. Molecular analysis of linezolid-resistant clinical isolates of Mycobacterium abscessus. Antimicrob Agents Chemother. 2019;63:e01842–18.
CAS
PubMed
PubMed Central
Google Scholar
Bergmann R, van der Linden M, Chhatwal GS, Nitsche-Schmitz DP. Factors that cause trimethoprim resistance in streptococcus pyogenes. Antimicrob Agents Chemother. 2014;58:2281–8.
Article
Google Scholar
Freitas AR, Tedim AP, Novais C, Coque TM, Peixe L. Distribution of putative virulence markers in Enterococcus faecium: towards a safety profile review. J Antimicrob Chemother. 2017;73:306–19.
Article
Google Scholar
Arshadi M, Mahmoudi M, Motahar MS, Soltani S, Pourmand MR. Virulence determinants and antimicrobial resistance patterns of vancomycin-resistant Enterococcus faecium isolated from different sources in Southwest Iran. Iran J Public Health. 2018;47:264–72.
PubMed
PubMed Central
Google Scholar
Hendrickx APA, van Luit-Asbroek M, Schapendonk CME, van Wamel WJB, Braat JC, Wijnands LM, et al. SgrA, a Nidogen-binding LPXTG surface Adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel Adhesins of hospital-acquired emEnterococcus faecium. Infect Immun. 2009;77:5097–106.
Article
CAS
Google Scholar
Sanchez-Diaz AM, Cuartero C, Lozano S, Rodriguez JD, Alonso JM, Quiles-Melero I, et al. Emergence and long-lasting persistence of linezolid-resistant Enterococcus faecium-ST117 in an oncohematologic patient after a nine-day course of linezolid. Microbial drug resistance (Larchmont, NY). 2014;20:17–21.
Article
CAS
Google Scholar