MDRO comprise a global threat [11] causing economic damage comparable to the 2008 financial crisis [12]. International experts rated their control the highest priority [13]. Surprisingly, to the best of our knowledge, this is the first multinational survey addressing specifically potential differences and major hindrances in practical implementation of contact precaution/isolation measures in MDROs. Representatives from most European countries and from a large number of non-EU countries across Africa, Asia, and South America participated. The results have confirmed our suspicions that indications and practical implementation of contact precautions including isolation measures vary considerably. This study also showed there were major inconsistencies particularly in the handling of ESBL-E, CR E. coli, and CREs.
Firstly, in contrast to ESCMID [3] recommendations, 23.3% of EU-respondents did not consider any contact precaution measures in non-E. coli ESBL; the proportion was even higher amongst non-EU respondents (34.7%). Secondly, we found between 30 and 45% of all respondents neither followed the HICPAC nor the ESCMID recommendations requiring HCW to wear gowns and gloves at all times when entering the room of a patient in contact isolation [14]. In clinical practice it seems sufficient not to don a gown (and gloves) if no contact with blood or bodily fluid is anticipated, rendering more time urgently needed for care and treatment. In any case, the emphasis has to be on thorough education and proper implementation of standard precautions and hand hygiene as their integral component because they constitute the mainstay of controlling the spread of all micro-organisms (including MDROs).
Thirdly, contrary to these recommendations, between 10 and 20% of respondents from all countries did not consider any rooming specifications, e.g. cohorting or isolation for gram-positive MDRO. Up to 30% of all respondents abstained from such interventions in gram-negative MDRO, especially non-E. coli ESBL. These deficits seem somewhat alarming, since omitting such control measures is likely to facilitate the nosocomial spread of these organisms [15].
Our survey found the inability to separate patients colonized or infected with MDRO was due to the lack of personnel and insufficient single rooms, rather than a consequence of guideline scepticism or evidence-base paucity. Isolation practices implementation barriers were similar to those found for MRSA interventions in USA HCW interviews [16]. These findings underpin the view that the greatest challenge to implement contact precautions/isolation is the need for more staffing and isolation facilities, reinforced by a strong infection prevention ethos amongst HCWs and supported by a skilled infection control team as outlined in a previous European project [17].
A more recent survey among members of the Society for Healthcare Epidemiology of America (SHEA) on contact precaution use for MRSA and GRE revealed that over 60% of respondents were interested in alternative approaches, such as enhanced standard precautions and environmental cleaning/disinfection or targeted contact precautions and isolation (e.g., in conditions enhancing horizontal spread, such as diarrhoea or urinary incontinence) [18]. Our survey underlines that risk-stratified precautions are implemented for ESBL-E in few institutions or countries, respectively.
However, whether limiting contact precaution to those who have diarrhoea or urinary incontinence is equally effective in reducing transmission than application of contact precautions irrespective of the presence of risk factors, and whether this newer approach may be considered for gram-positive as well as gram-negative MDROs, remains to be determined in future studies and are matters of some urgency.
The strengths of this survey were its comprehensiveness about use of personal protective equipment and augmenting the response with on-site recruitment using a booth at ECCMID. Compared to other surveys we explicitly differentiated between E. coli and other Enterobacteriaceae, since the transmission risk of ESBL E. coli is deemed to be lower compared to non-E. coli ESBL, at least in the acute care setting [3, 19, 20]. The survey encompassed a broad geographical area across the world, including 32 EU and 28 non-EU countries.
Our study has some limitations. The online survey was potentially available to approx. 7000 ESCMID members and the ECCMID attendance was 10,839. Thus, the response rate was very poor, but still of significant size to draw interesting conclusions. Also, ECCMID attendants may have differed from other infection control experts and 10% of participants, though mostly non-clinicians with less experience in infection control and infectious diseases, showed unexpectedly poor knowledge about their local practice.
We therefore would urge some caution in generalising from these results, but they are a worrying potential indicator of variability in recommended practices, and are surely causes for concern which cannot be ignored. Larger studies, perhaps by individual countries, are required and measures to relieve recognised hindrances to improvement reflected upon and implemented.
The need for more rigorous studies comparing standard precautions to contact precautions/isolation in reducing the spread of MDRO has been previously highlighted [18]. These are essential to informing the best prevention strategies to combat spread of MDRO. The lack of uniform positive effects of contact isolation to prevent transmission may be explained by the variability of interpretation of this term. Indications for contact isolation require a global definition and further sound studies. ESCMID, HICPAC and any other MDR guidelines could perhaps add a score to the current infection control guidelines that would allow estimation of the level of implementation of contact precautions.