Davies S. (2013). Annual report of the chief medical officer, 2011 – volume 2. https://www.gov.uk/government/publications/chief-medical-officer-annual-report-volume-2 Accessed 16th July 2016.
Australian Government. Department of Health, Department of Agriculture (2015). Responding to the Threat of Antimicrobial Resistance. https://www.health.gov.au/internet/main/publishing.nsf/.../amr-strategy-2015-2019.pdf. Accessed 8th Nov 2016.
O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. London: H M Government/Wellcome Trust; 2016. p. 2016.
Google Scholar
WHO – World Health Organization (2012).The evolving threat of antimicrobial resistance – Options for action. http://www.who.int/patientsafety/implementation/amr/publication/en/ Accessed 8th Nov 2016.
WHO (2015). Global action plan on antimicrobial resistance. Geneva: World Health Organization, 2015. http://www.who.int/drugresistance/global_action_plan/en/ Accessed 8th Nov 2016.
Kluytmans JA, Overdevest IT, Willemsen I, et al. Extended-spectrum β-lactamase-producing Escherichia Coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin Infect Dis. 2013;56(4):478–87.
Article
CAS
PubMed
Google Scholar
Stewardson AJ, Renzi G, Maury N, et al. Extended-spectrum β-lactamase-producing Enterobacteriaceae in hospital food: a risk assessment. Infect Control Hosp Epidemiol. 2014;35(4):375–83.
Article
PubMed
Google Scholar
Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, Heck M, Savelkoul P, Vandenbroucke-Grauls C, van der Zwaluw K, Huijsdens X, Kluytmans J. Extended-Spectrum ß-lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg Infect Dis. 2011;17(7):1216–22.
Article
PubMed
PubMed Central
Google Scholar
EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) (2015). EU Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013. EFSA Journal 2015;13:4036. http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-zoonotic-bacteria-humans-animals-food-EU-summary-report-2013.pdf. Accessed 8th Nov 2016.
DANMAP (2014). DANMAP 2013 - use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. September 2015. Copenhagen. http://www.danmap.org/~/media/Projekt%20sites/Danmap/DANMAP%20reports/DANMAP%202014/Danmap_2014.ashx. Accessed 8th Nov 2016.
ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority) and EMA (European Medicines Agency) (2015). ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. Stockholm/Parma/London: ECDC/EFSA/EMA, 2015. EFSA Journal 13: 4006. https://www.efsa.europa.eu/en/efsajournal/pub/4006 Accessed 8th Nov 2016.
Guerra B, Fischer J, Helmuth R. An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol. 2014;171:290.
Article
PubMed
Google Scholar
JETACAR (Joint Expert Advisory Committee on Antibiotic Resistance [JETACAR]). The use of antibiotic in food producing animals: antibiotic-resistant bacteria in animals and humans. 1999. Commonwealth of Australia. http://www.health.gov.au/internet/main/publishing.nsf/Content/health-pubs-jetacar-cnt.htm/$FILE/jetacar.pdf. Accessed 6th Mar 2015.
Cheng AC, Turnidge J, Collignon P, Looke D, Barton M, Gottlieb T. Control of fluoroquinolone resistance through successful regulation, Australia. Emerg Infect Dis. 2012;18(9):1453–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
APVMA - Australian Pesticides and Veterinary Medicines Authority (2014). Quantity of antimicrobial products sold for veterinary use in Australia. Australian Pesticides and Veterinary Medicines Authority. Kingston. Australia. https://apvma.gov.au/node/11816. Accessed 8th Nov 2016.
Jordan D, Chin JJ, Fahy VA, Barton MD, Smith MG, Trott DJ. Antimicrobial use in the Australian pig industry: results of a national survey. Aust Vet J. 2009;87(6):222–9.
Article
CAS
PubMed
Google Scholar
Australia - Pork meat import restrictions (PRRS/PMWS). European Commission Trade, Market Access Database. Agriculture and Fisheries Sector. 2012 May 2.
Government of Canada. Sample Collection, Preparation & Laboratory Methodologies. January 2010. National Integrated Enteric Disease Surveillance Program. http://www.phac-aspc.gc.ca/foodnetcanada/niedsp10-pnisme10/s02-eng.php Accessed 8th Nov 2016.
Kanki M, Sakata J, Taguchi M, Kumeda Y, Ishibashi M, Kawai T, Kawatsu K, Yamasaki W, Inoue K, Miyahara M. Effect of sample preparation and bacterial concentration on Salmonella enterica detection in poultry meat using culture methods and PCR assaying of preenrichment broths. Food Microbiol. 2009;26:1–3.
Article
CAS
PubMed
Google Scholar
Clinical and Laboratory Standards Institute (CLSI). M100-S25 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-fifth informational supplement. January 2015. Vol 35, No. 3.
European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST Expert Rules Version 3.1. Intrinsic Resistance and Exceptional Phenotypes Tables. http://www.eucast.org/expert_rules_and_intrinsic_resistance/ (Accessed 30th Jan 2018).
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial wild type distributions of microorganisms. https://mic.eucast.org/Eucast2/SearchController/search.jsp?action=performSearch&BeginIndex=0&Micdif=mic&NumberIndex=50&Antib=-1&Specium=430. (Accessed 29th Jan 2018).
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial wild type distributions of microorganisms. https://mic.eucast.org/Eucast2/SearchController/search.jsp?action=performSearch&BeginIndex=0&Micdif=mic&NumberIndex=50&Antib=-1&Specium=218. (Accessed 29th Jan 2018).
Jiang X, Zhang Z, Li M, et al. Detection of extended-Spectrum -lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50:2990–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beceiro A, Fernández-Cuenca F, Ribera A, et al. False extended-spectrum beta-lactamase detection in Acinetobacter spp. due to intrinsic susceptibility to clavulanic acid. J Antimicrob Chemother. 2008;61:301–8.
Article
CAS
PubMed
Google Scholar
Thomson KS. Extended-Spectrum-β-lactamase, AmpC, and Carbapenemase issues. J Clin Microbiol. 2010;48:1019–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.
Article
CAS
PubMed
Google Scholar
Hanson ND, Thomson KS, Moland ES, Sanders CC, Berthold G, Penn RG. Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. J Antimicrob Chemother. 1999;44:377–80.
Article
CAS
PubMed
Google Scholar
Chia JH, Chu C, Su LH, Chiu CH, Kuo AJ, Sun CF, et al. Development of a multiplex PCR and SHV melting-curve mutation detection system for detection of some SHV and CTX-M β-lactamases of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae in Taiwan. J Clin Microbiol. 2005;43:4486–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birkett CI, Ludlam HA, Woodford N, Brown DFJ, Brown NM, Roberts MTM, et al. Real-time TaqMan PCR for rapid detection and typing of genes encoding CTX-M extended-spectrum β-lactamases. J Med Microbiol. 2007;56(Pt 1):52–5.
Article
CAS
PubMed
Google Scholar
Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40:2153–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48:15–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gales AC, et al. Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol. 2007;45:544–7.
Article
CAS
PubMed
Google Scholar
Clausen PT, Zankari E, Aarestrup FM, Lund O. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. J Antimicrob Chemother. 2016;71(9):2484–8.
Article
CAS
PubMed
Google Scholar
Calbo E, Freixas N, Xercavins M, et al. Foodborne nosocomial outbreak of SHV1 and CTX-M-15-producing Klebsiella Pneumoniae: epidemiology and control. Clin Infect Dis. 2011;52(6):743–9.
Article
PubMed
Google Scholar
Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.:an overview. Microbes Environ. 2011;26:101–12.
Article
PubMed
Google Scholar
Janda JM, Abbott SL. The genus hafnia: from soup to nuts. Clin Microbiol Rev. 2006;19:12–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Argudín MA, Deplano A, Meghraoui A, et al. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics (Basel). 2017;6(2):E12.
Article
Google Scholar
van Breda LK, Dhungyel OP, Ward MP. Antibiotic resistant Escherichia coli in southeastern Australian pig herds and implications for surveillance. Zoonoses Public Health. 2018;65(1):e1–7.
Article
CAS
PubMed
Google Scholar
Obeng AS, Rickard H, Ndi O, Sexton M, Barton M. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia Coli isolated from the faeces of intensively farmed and free range poultry. Vet Microbiol. 2012;54(3–4):305–15.
Article
Google Scholar
Pande VV, Gole VC, McWhorter AR, Abraham S, Chousalkar KK. Antimicrobial resistance of non-typhoidal salmonella isolates from egg layer flocks and egg shells. Int J Food Microbiol. 2015;203:23–6.
Article
CAS
PubMed
Google Scholar
Smith MG, Jordan D, Gibson JS, Cobbold RN, Chapman TA, Abraham S, Trott DJ. Phenotypic and genotypic profiling of antimicrobial resistance in enteric Escherichia Coli communities isolated from finisher pigs in Australia. Aust Vet J. 2016;94(10):371–6.
Article
CAS
PubMed
Google Scholar
Folster JP, Pecic G, Singh A, Dvual B, Rickert R, Ayers S, Abbott J, McGlinchey B, Bauer-Turpin J, Haro J, Hise K, Zhao S, Fedorka-Cray PJ, Whichard J, McDermott PF. Characterization of extended-Spectrum cephalosporin-resistant Salmonella enterica Serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009. Foodborne Pathog Dis. 2012;9(7):638–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mihaiu L, Lapusan A, Tanasuica R, Sobolu R, Mihaiu R, Oniga O, Mihaiu M. First study of Salmonella in meat in Romania. J Infect Dev Ctries. 2014;8(1):50–8.
Article
CAS
PubMed
Google Scholar
Ojer-Usoz E, Gonzalez D, Vitas AI, et al. Prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in meat products sold in Navarra, Spain. Meat Sci. 2013;93(2):316–21.
Article
CAS
PubMed
Google Scholar
Silva N, Costa L, Goncalves A, Sousa M, Radhouani H, Brito F, et al. Genetic characterisation of extended-spectrum beta-lactamases in Escherichia Coli isolated from retail chicken products including CTX-M-9 containing isolates: a food safety risk factor. Br Poult Sci. 2012;53(6):747–55.
Article
CAS
PubMed
Google Scholar
Egea P, Lopez-Cerero L, Navarro MD, Rodriguez-Bano J, Pascual A. Assessment of the presence of extended-spectrum beta-lactamase-producing Escherichia Coli in eggshells and ready-to-eat products. Eur J Clin Microbiol Infect Dis. 2011;30(9):1045–7.
Article
CAS
PubMed
Google Scholar
Matuschek E, Åhman J, Webster C, Kahlmeter G. Antimicrobial susceptibility testing of colistin - evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect. 2017;17:30667–5.
Google Scholar
Carretto E, Brovarone F, Russello G, et al. Clinical validation of the SensiTest™ Colistin, a broth microdilution based method to evaluate colistin MICs. J Clin Microbiol. 2018:01523–17. https://0-doi-org.brum.beds.ac.uk/10.1128/JCM.01523-17. [Epub ahead of print]
Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.
Article
PubMed
Google Scholar
Hadjadj L, Riziki T, Zhu Y, Li J, Diene SM, Rolain JM. Study of mcr-1 gene-mediated colistin resistance in Enterobacteriaceae isolated from humans and animals in different countries. Genes (Basel). 2017;8(12):E394.
Article
Google Scholar
Ellem JA, Ginn AN, Chen SC, et al. Locally Acquired mcr-1 in Escherichia coli, Australia, 2011 and 2013. Emerg Infect Dis. 2017;23(7):1160–3.
Article
PubMed
PubMed Central
Google Scholar
Australian Commission on Safety and Quality in Health Care. AURA 2016: first Australian report on antimicrobial use and resistance in human health. Commonwealth of Australia, 2016. https://www.safetyandquality.gov.au/publications/aura-2016-first-australian-report-on-antimicroibal-use-and-resistance-in-human-health/ (Accessed 29th Jan 2018).