Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1–12.
Article
CAS
PubMed
Google Scholar
Dunn K, Edwards-Jones V. The role of Acticoat with nanocrystalline silver in the management of burns. Burns J. Int. Soc. Burn Inj 2004;30 Suppl 1:S1–9.
Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Mol. Basel Switz. 2015;20:8856–74.
CAS
Google Scholar
Lu L, Sun RW-Y, Chen R, Hui C-K, Ho C-M, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13:253–62.
CAS
PubMed
Google Scholar
Microsoft Word - Final_Opinion_Health Effects of Exposure to nanosilver to be published on 13 06 2014.docx - scenihr_o_039.pdf [Internet]. [cited 2016 Nov 3]. Available from: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_039.pdf
Oyanedel-Craver VA, Smith JA. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol. 2008;42:927–33.
Article
CAS
PubMed
Google Scholar
Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012;2:32.
Article
Google Scholar
Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents. 2004;23(Suppl 1):S75–8.
Article
CAS
PubMed
Google Scholar
Saeb ATM, Alshammari AS, Al-Brahim H, Al-Rubeaan KA. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. ScientificWorldJournal. 2014;2014:704708.
Article
PubMed
PubMed Central
Google Scholar
Velázquez-Velázquez JL, Santos-Flores A, Araujo-Meléndez J, Sánchez-Sánchez R, Velasquillo C, González C, et al. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Mater Sci Eng C Mater Biol Appl. 2015;49:604–11.
Article
PubMed
Google Scholar
Lullove EJ, Bernstein B. Use of SilvrSTAT® in lower extremity wounds: a two center case series « Journal of Diabetic Foot Complications 2015;7:13–16.
Hendry AT, Stewart IO. Silver-resistant Enterobacteriaceae from hospital patients. Can J Microbiol. 1979;25:915–21.
Article
CAS
PubMed
Google Scholar
McHugh GL, Moellering RC, Hopkins CC, Swartz MN. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet Lond Engl. 1975;1:235–40.
Article
CAS
Google Scholar
Gunawan C, Teoh WY, Marquis CP. Amal R. Induced adaptation of Bacillus sp to antimicrobial nanosilver Small Weinh Bergstr Ger. 2013;9:3554–60.
CAS
Google Scholar
Jansen AM, Lockatell CV, Johnson DE, Mobley HLT. Visualization of Proteus Mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun. 2003;71:3607–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mobley HL, Belas R. Swarming and pathogenicity of Proteus Mirabilis in the urinary tract. Trends Microbiol. 1995;3:280–4.
Article
CAS
PubMed
Google Scholar
Mathur S, Sabbuba NA, Suller MTE, Stickler DJ, Feneley RCL. Genotyping of urinary and fecal Proteus Mirabilis isolates from individuals with long-term urinary catheters. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2005;24:643–4.
Article
CAS
Google Scholar
Nicolle LE. Catheter-related urinary tract infection. Drugs Aging. 2005;22:627–39.
Article
PubMed
Google Scholar
Armbruster CE, Mobley HLT. Merging mythology and morphology: the multifaceted lifestyle of Proteus Mirabilis. Nat Rev Microbiol. 2012;10:743–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia Coli and Proteus Mirabilis. Clin Microbiol Rev. 2008;21:26–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rózalski A, Sidorczyk Z, Kotełko K. Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev MMBR. 1997;61:65–89.
PubMed
Google Scholar
Bronze MS, Cunha BA. Diabetic Foot Infections: Practice Essentials, Background, Pathophysiology [Internet]. 2016 [cited 2016 Nov 3]. Available from: http://emedicine.medscape.com/article/237378-overview
Gonzalez G, Bronze MS. Proteus Infections: Background, Pathophysiology, Epidemiology [Internet]. 2016 [cited 2016 Nov 3]. Available from: http://emedicine.medscape.com/article/226434-overview
Pearson MM, Sebaihia M, Churcher C, Quail MA, Seshasayee AS, Luscombe NM, et al. Complete genome sequence of uropathogenic Proteus Mirabilis, a master of both adherence and motility. J Bacteriol. 2008;190:4027–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Habibi M, Asadi Karam MR, Bouzari S. In silico design of fusion protein of FimH from uropathogenic Escherichia Coli and MrpH from Proteus Mirabilis against urinary tract infections. Adv. Biomed Res. 2015;4:217.
PubMed
PubMed Central
Google Scholar
Baldo C, Rocha SPD. Virulence factors of Uropathogenic Proteus Mirabilis - a mini review. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2014;3:24–7.
Google Scholar
Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol. 2010;13:558–64.
Article
CAS
PubMed
Google Scholar
Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horner CS, Abberley N, Denton M, Wilcox MH. Surveillance of antibiotic susceptibility of Enterobacteriaceae isolated from urine samples collected from community patients in a large metropolitan area, 2010-2012. Epidemiol Infect. 2014;142:399–403.
Article
CAS
PubMed
Google Scholar
Miró E, Agüero J, Larrosa MN, Fernández A, Conejo MC, Bou G, et al. Prevalence and molecular epidemiology of acquired AmpC β-lactamases and carbapenemases in Enterobacteriaceae isolates from 35 hospitals in Spain. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2013;32:253–9.
Article
Google Scholar
Sheng W-H, Badal RE, Hsueh P-R, Program SMART. Distribution of extended-spectrum β-lactamases, AmpC β-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the study for monitoring antimicrobial resistance trends (SMART). Antimicrob Agents Chemother. 2013;57:2981–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouchillon SK, Badal RE, Hoban DJ, Hawser SP. Antimicrobial susceptibility of inpatient urinary tract isolates of gram-negative bacilli in the United States: results from the study for monitoring antimicrobial resistance trends (SMART) program: 2009-2011. Clin Ther. 2013;35:872–7.
Article
CAS
PubMed
Google Scholar
Hawser SP, Badal RE, Bouchillon SK, Hoban DJ, Hackel MA, Biedenbach DJ, et al. Susceptibility of gram-negative aerobic bacilli from intra-abdominal pathogens to antimicrobial agents collected in the United States during 2011. J Inf Secur. 2014;68:71–6.
Google Scholar
Karlowsky JA, Adam HJ, Baxter MR, Lagacé-Wiens PRS, Walkty AJ, Hoban DJ, et al. Vitro activity of ceftaroline-avibactam against gram-negative and gram-positive pathogens isolated from patients in Canadian hospitals from 2010 to 2012: results from the CANWARD surveillance study. Antimicrob Agents Chemother. 2013;57:5600–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of gram-negative organisms isolated from patients hospitalized in intensive care units in United States and European hospitals (2009-2011). Diagn Microbiol Infect Dis. 2014;78:443–8.
Article
CAS
PubMed
Google Scholar
Chen L, Al Laham N, Chavda KD, Mediavilla JR, Jacobs MR, Bonomo RA, et al. First report of an OXA-48-producing multidrug-resistant Proteus Mirabilis strain from Gaza, Palestine. Antimicrob Agents Chemother. 2015;59:4305–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Latif U, Al-Rubeaan K, Saeb ATM. A review on antimicrobial chitosan-silver nanocomposites: a roadmap toward pathogen targeted synthesis. Int J Polym Mater Polym Biomater. 2015;64:448–58.
Article
CAS
Google Scholar
Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect Dis. 2014;20:O255–66.
CAS
Google Scholar
Holla G, Yeluri R, Munshi AK. Evaluation of minimum inhibitory and minimum bactericidal concentration of nano-silver base inorganic anti-microbial agent (Novaron(®)) against streptococcus mutans. Contemp. Clin Dent. 2012;3:288–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yassien M, Khardori N. Interaction between biofilms formed by Staphylococcus Epidermidis and quinolones. Diagn Microbiol Infect Dis. 2001;40:79–89.
Article
CAS
PubMed
Google Scholar
Saeb AT, Abouelhoda M, Selvaraju M, Althawadi SI, Mutabagani M, Adil M, et al. The Use of Next-Generation Sequencing in the Identification of a Fastidious Pathogen: A Lesson From a Clinical Setup. Evol. Bioinforma. Online [Internet]. 2017 [cited 2017 Oct 11];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395265/
Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abouelhoda MI, Kurtz S, Ohlebusch E. CoCoNUT: an efficient system for the comparison and analysis of genomes. BMC Bioinformatics. 2008;9:476.
Article
PubMed
PubMed Central
Google Scholar
Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42:D581–91.
Article
CAS
PubMed
Google Scholar
Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data. PLoS One. 2013;8:e77302.
Article
CAS
PubMed
PubMed Central
Google Scholar
VFDB: Virulence Factors Database [Internet]. Virulance Factors Pathog. Bact. 2003 [cited 2016 Nov 3]. Available from: http://www.mgc.ac.cn/VFs/
Liu B, Pop M. ARDB--antibiotic resistance genes database. Nucleic Acids Res. 2009;37:D443–7.
Article
CAS
PubMed
Google Scholar
McArthur AG, Wright GD. Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr Opin Microbiol. 2015;27:45–50.
Article
PubMed
Google Scholar
McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57:3348–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.
Article
CAS
PubMed
Google Scholar
Olaitan AO, Morand S, Rolain J-M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643.
Article
PubMed
PubMed Central
Google Scholar
Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012;18:268–81.
CAS
Google Scholar
Graves JL, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, et al. Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front. Genet. [Internet]. 2015 [cited 2017 Oct 16];6. Available from: https://0-www-ncbi-nlm-nih-gov.brum.beds.ac.uk/pmc/articles/PMC4330922/
Tang Z, Liu S, Dong S, Wang E. Electrochemical synthesis of ag nanoparticles on functional carbon surfaces. J Electroanal Chem. 502:146–51.
Park H-J, Kim JY, Kim J, Lee J-H, Hahn J-S, MB G, et al. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43:1027–32.
Article
CAS
PubMed
Google Scholar
Beier S, Bertilsson S. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol. 2013;4:149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. The non-catalytic chitin-binding protein CBP21 from Serratia Marcescens is essential for chitin degradation. J Biol Chem. 2005;280:28492–7.
Article
CAS
PubMed
Google Scholar
Svitil AL, Chadhain S, Moore JA, Kirchman DL. Chitin degradation proteins produced by the marine bacterium Vibrio Harveyi growing on different forms of chitin. Appl Environ Microbiol. 1997;63:408–13.
CAS
PubMed
PubMed Central
Google Scholar
Wieczorek AS, Hetz SA, Kolb S. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries. Biogeosciences. 2014;11:3339–52.
Article
Google Scholar
Gupta V, Prasanna R, Natarajan C, Srivastava AK, Sharma J. Identification, characterization, and regulation of a novel antifungal chitosanase gene (cho) in anabaena spp. Appl Environ Microbiol. 2010;76:2769–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta V, Prasanna R, Srivastava AK, Sharma J. Purification and characterization of a novel antifungal endo-type chitosanase from anabaena fertilissima. Ann Microbiol. 2011;62:1089–98.
Article
Google Scholar
Cutting K, White R, Edmonds M. The safety and efficacy of dressings with silver - addressing clinical concerns. Int Wound J. 2007;4:177–84.
Article
PubMed
Google Scholar
McInroy L, Cullen B, Clark R. Are silver-containing dressings effective against bacteria in biofilms? [internet]. Orlando; 2010. Available from: www.systagenix.it/cms/uploads/McInroy_biofilms_SAWC_2010.pdf
Stephens S, Clark R, Del Bono M, Snyder R. Designing in vitro, in vivo and clinical evaluations to meet the needs of the patient and clinician: dressing wound adherence. Geneva; 2010.
Thomas S. Alginate dressings in surgery and wound management--part 1. J Wound Care. 2000;9:56–60.
Article
CAS
PubMed
Google Scholar
Thomas S. Alginate dressings in surgery and wound management: part 2. J Wound Care. 2000;9:115–9.
Article
CAS
PubMed
Google Scholar
Thomas S. Alginate dressings in surgery and wound management: part 3. J Wound Care. 2000;9:163–6.
Article
CAS
PubMed
Google Scholar
Exsalt® SD7 Powerful and effective interaction with microbes. [Internet]. [cited 2016 Nov 3]. Available from: http://www.excitontech.com/images/docs/exsalt%20Science%20Broad%20Spectrum.pdf
Haycocks S, Chadwick P. Using an activated charcoal dressing with silver for malodour, infection and overgranulation in diabetic foot ulcers importance of appropriate dressing selection for diabetic foot ulcers. Diabet Foot J. 2014;17:74–7.
Google Scholar
Allison C, Lai HC, Hughes C. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus Mirabilis. Mol Microbiol. 1992;6:1583–91.
Article
CAS
PubMed
Google Scholar
Butler MT, Wang Q, Harshey RM. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci U S A. 2010;107:3776–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai S, Tremblay J, Déziel E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol. 2009;11:126–36.
Article
CAS
PubMed
Google Scholar
Gadagkar R. SURVIVAL STRATEGIES: COOPERATION AND CONFLICT IN ANIMAL SOCIETIES. [Internet]. Cambridge, Massachusetts: Harvard University Press; 1997 [cited 2016 Nov 3]. Available from: https://www.researchgate.net/publication/276238210_Gadagkar_R_1997_SURVIVAL_STRATEGIES_COOPERATION_AND_CONFLICT_IN_ANIMAL_SOCIETIES_Harvard_University_Press_Cambridge_Massachusetts_x_196_pp_ISBN_0-674-17055-5_price_hardcover_2200
Hamilton WD. Geometry for the selfish herd. J Theor Biol. 1971;31:295–311.
Article
CAS
PubMed
Google Scholar
Wu YL, Liu KS, Yin XT, Fei RM. GlpC gene is responsible for biofilm formation and defense against phagocytes and imparts tolerance to pH and organic solvents in Proteus vulgaris. Genet Mol Res GMR. 2015;14:10619–29.
Article
CAS
PubMed
Google Scholar
Jiang S-S, Liu M-C, Teng L-J, Wang W-B, Hsueh P-R, Liaw S-J. Proteus Mirabilis pmrI, an RppA-regulated gene necessary for polymyxin B resistance, biofilm formation, and urothelial cell invasion. Antimicrob Agents Chemother. 2010;54:1564–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chien C-C, Lin B-C, Biofilm WC-H. Formation and heavy metal resistance by an environmental pseudomonas sp. Biochem Eng J. 2013;78:132–7.
Article
CAS
Google Scholar
Nocelli N, Bogino PC, Banchio E, Giordano W. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials. 2016;9:418.
Article
PubMed Central
Google Scholar
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.
Article
PubMed
Google Scholar
Li XZ, Nikaido H, Williams KE. Silver-resistant mutants of Escherichia Coli display active efflux of ag+ and are deficient in porins. J Bacteriol. 1997;179:6127–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lok C-N, Ho C-M, Chen R, Tam PK-H, Chiu J-F, Che C-M. Proteomic identification of the Cus system as a major determinant of constitutive Escherichia Coli Silver resistance of chromosomal origin. J Proteome Res. 2008;7:2351–6.
Article
PubMed
Google Scholar
Randall CP, Gupta A, Jackson N, Busse D, O’Neill AJ. Silver resistance in gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother. 2015;70:1037–46.
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Yin K, Li B, Chen LA. Glutathione S-transferase from Proteus Mirabilis involved in heavy metal resistance and its potential application in removal of Hg2+. J Hazard Mater. 2013;261:646–52.
Article
CAS
PubMed
Google Scholar
Nair PMG, Choi J. Identification, characterization and expression profiles of Chironomus Riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol Amst Neth. 2011;101:550–60.
Article
CAS
Google Scholar
Toptchieva A, Sisson G, Bryden LJ, Taylor DE, Hoffman PS. An inducible tellurite-resistance operon in Proteus Mirabilis. Microbiol Read Engl. 2003;149:1285–95.
Article
CAS
Google Scholar
Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A. 2009;106:5213–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A. 2006;103:2075–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–6.
Article
CAS
PubMed
Google Scholar
Srinivasan VB, Vaidyanathan V, Mondal A, Rajamohan G. Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella Pneumoniae NTUH-K2044. PLoS One. 2012;7:e33777.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawaz M, Sung K, Kweon O, Khan S, Nawaz S, Steele R. Characterisation of novel mutations involved in quinolone resistance in Escherichia Coli isolated from imported shrimp. Int J Antimicrob Agents. 2015;45:471–6.
Article
CAS
PubMed
Google Scholar
Kubanov A, Vorobyev D, Chestkov A, Leinsoo A, Shaskolskiy B, Dementieva E, et al. Molecular epidemiology of drug-resistant Neisseria gonorrhoeae in Russia (current status, 2015). BMC Infect Dis. 2016;16:389.
Article
PubMed
PubMed Central
Google Scholar
Jin DJ, Gross CA. Mapping and sequencing of mutations in the Escherichia Coli rpoB gene that lead to rifampicin resistance. J Mol Biol. 1988;202:45–58.
Article
CAS
PubMed
Google Scholar
Zhao J, Aoki T. Cloning and nucleotide sequence analysis of a chloramphenicol acetyltransferase gene from vibrio anguillarum. Microbiol Immunol. 1992;36:695–705.
Article
CAS
PubMed
Google Scholar
Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta. 2008;1778:1814–38.
Article
CAS
PubMed
Google Scholar
Lee J-Y, Ko KS. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas Aeruginosa clinical isolates. Diagn Microbiol Infect Dis. 2014;78:271–6.
Article
CAS
PubMed
Google Scholar
Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia Coli. J Bacteriol. 2003;185:3804–12.
Article
PubMed
PubMed Central
Google Scholar
Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of salmonella enterica serovar typhimurium. J Bacteriol. 2007;189:9066–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Outten FW, Huffman DL, Hale JA, O’Halloran TV. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia Coli. J Biol Chem. 2001;276:30670–7.
Article
CAS
PubMed
Google Scholar
Andersson DI. Persistence of antibiotic resistant bacteria. Curr Opin Microbiol. 2003;6:452–6.
Article
CAS
PubMed
Google Scholar